首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas "median survival time," the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical "learning curve" but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning.  相似文献   

4.
Predation imposes selection on the ability of prey to recognize and respond to potential threats. Many prey species detect predators via chemoreception, particularly in aquatic environments. Also, chemical cues from injured prey are often perceived as an indication of predation risk. However, because antipredatory behavior can be costly, prey responses should depend on the current level of risk that each predator poses, which may depend on the type of chemical cues detected. We exposed larval newts, Triturus pygmaeus, to chemical cues from predator larval beetles or to alarm cues from conspecific larval newts and examined the behavioral changes of larval newts. Results showed that larval newts reduced activity levels when conspecific alarm cues were present but not when the predator cues alone were present. These results might suggest that larval newts are unable to recognize predator chemicals. To avoid costs of unnecessary antipredatory behaviors, larval newts may benefit by avoiding only predators that represent a current high level of threat, showing only antipredatory responses when they detect conspecific alarm cues indicating that an actual predatory attack has occurred.  相似文献   

5.
Predators use a variety of information sources to locate potential prey, and likewise prey animals use numerous sources of information to detect and avoid becoming the meal of a potential predator. In freshwater environments, chemosensory cues often play a crucial role in such predator/prey interactions. The importance of chemosensory information to teleost fish in marine environments is not well understood. Here, we tested whether coral reef fish predators are attracted to damage-released chemical cues from already wounded prey in order to find patches of prey and minimize their own costs of obtaining food. Furthermore, we tested if these chemical cues would convey information about status of the prey. Using y-maze experiments, we found that predatory dottybacks, Pseudochromis fuscus, were more attracted to skin extracts of damselfish, Pomacentrus amboinensis, prey that were in good condition compared to prey in poor body condition. Moreover, in both the laboratory and field, we found that predators could differentiate between skin extracts from prey based on prey size, showing a greater attraction to extracts made from prey that were the appropriate size to consume. This suggests that predators are not attracted to any general substance released from an injured prey fish instead being capable of detecting and distinguishing relatively small differences in the chemical composition of the skin of their prey. These results have implications for understanding predator foraging strategies and highlights that chemical cues play a complex role in predator–prey interactions in marine fish.  相似文献   

6.
The common assumption that test groups are motivationally homogeneous and utilize the same orientation reference cues may not be correct. Green frogs (Rana clamitans) were trained in a circular arena to seek a goalbox located 90° counterclockwise from a lamp. Most frogs learned the task, but an analysis of the training and testing records showed marked individuality in task learning. Some frogs found the goalbox only with the lamp as a cue; others used the goalbox, the goalbox and lamp, or the goalbox and the lamp separately as cues. One individual learned to orient non-randomly to some still-unknown but geographically fixed cue. These observations show that even though frogs can learn a common task, under supposedly identical training conditions they may utilize a diversity of cues. Larger (thus, older) frogs were significantly more consistent in their patterns of movement. Paths of movement that succeeded in reaching the goal tended to be repeated in later tests. Frogs trained to move around a partition to a goal continued that path even when the obstruction was later removed, suggesting the use of a motor memory or kinaesthesia. Standard orientation tests, in which the group was significantly oriented in the expected direction, were shown on closer inspection to consist of frogs moving according to several individually stereotyped factors. Thus, the heterogeneity of individual experimental animals should be more fully taken into consideration in orientation research.  相似文献   

7.
Male and female red swordtails Xiphophorus helleri exposed in the laboratory to swordtail skin extract, fathead minnow Pimephales promelas skin extract and distilled water, significantly decreased activity in response to conspecific skin extract compared to minnow skin extract or distilled water. Moreover, males and females responded differentially to conspecific skin extract. Males tended to occupy the top compartment of the tank, whereas females tended to occupy the bottom compartment and seek shelter more. In a second experiment swordtails reduced activity significantly more in response to swordtail skin extract compared to closely related guppy Poecilia reticulata skin extract, minnow skin extract or distilled water. Swordtails also reduced activity significantly more to guppy skin extract compared to minnow skin and distilled water. However, males and females did not respond differentially to guppy skin extract. This suggests that chemical alarm cues are partially conserved within the Poeciliidae, but the level of response is of lower intensity to heterospecific skin extracts.  相似文献   

8.
1. While the antipredator behaviour of prey has been well studied, little is known about the rules governing the predation risk assessment of prey. In this study, I measured the activity levels of predator-naive green frog (Rana clamitans) tadpoles during and after exposures to the chemical cue of predatory larval dragonflies (Anax spp.). I then used the lengths of the time lags from the end of the cue exposures until the tadpoles returned to a control level of activity as an index of the perceived risk of the tadpoles. 2. While tadpoles always responded upon exposure to the Anax chemical cue by strongly reducing their activity level, their perceived risk increased asymptotically over time during the initial period of the cue exposure. Tadpoles of all size classes perceived increasing risk in proportion to chemical cue concentration, but the length of time that tadpoles responded during cue exposure and the length of their post-exposure time lags decreased with increasing body mass. 3. The results suggest that the perceived risk of green frog tadpoles varies over time and does not correspond directly to their behavioural response (i.e. activity level). However, their perceived risk does appear to vary in accordance with the predation risk associated with the Anax chemical cue and the reliability of the information from the cue, and therefore may be predictable.  相似文献   

9.
Olfaction is a common sensory mode of communication in much of the Vertebrata, although its use by adult frogs remains poorly studied. Being part of an open signalling system, odour cues can be exploited by 'eavesdropping' predators that hunt by smell, making association with odour a high-risk behaviour for prey. Here, we show that adult great barred frogs (Mixophes fasciolatus) are highly attracted to odour cues of conspecifics and those of sympatric striped marsh frogs (Limnodynastes peronii). This attraction decreased significantly with the addition of odours of a scent-hunting predator, the red-bellied black snake (Pseudechis porphyriacus), indicating that frogs perceived predation risks from associating with frog odours. Male frogs, however, maintained some attraction to unfamiliar conspecific scents even with predator odours present, suggesting that they perceived benefits of odour communication despite the risk. Our results indicate that adult frogs can identify species and individuals from their odours and assess the associated predation risk, revealing a complexity in olfactory communication previously unknown in adult anurans.  相似文献   

10.
The behavioural response of the freshwater zooplankter Daphniato chemicals from its food, the green alga Scenedesmus, to algalcells, to the green colour from chlorophyll, to chemicals releasedfrom congeners and conspecifics, and to chemicals released frominvertebrate (Chaoborus) and vertebrate predators (Leuciscus)was investigated in a Y-tube olfactometer. No preference wasobserved either for medium that had contained algae, or formedium with algal cells or with the green colour of algae, offeredas alternatives to clean medium. In contrast, swimming speedwas significantly reduced at high algal concentrations and inthe presence of green colour. Moreover, starved animals hadlost their rheotaxis. Neither Daphnia magna nor Daphnia pulexhad a preference for either clean medium or medium that hadcontained conspecifics, but D. magna significantly chose cleanmedium when medium which had been inhabited by D. pulex wasthe alternative. No avoidance of medium from Chaoborus cultureswas found, but D. magna significantly avoided medium that hadbeen inhabited by ides (Leuciscus idus L.). The responses observedcould result in aggregation of animals by reduced swimming speedat high algal densities and by avoidance of areas with predators.When these cues have become less important due to food depletionand decreased predation pressure, the interspecific-competitor-relatedcues might result in desegregation.  相似文献   

11.
The speed with which individuals can learn to identify and react appropriately to predation threats when transitioning to new life history stages and habitats will influence their survival. This study investigated the role of chemical alarm cues in both anti-predator responses and predator identification during a transitional period in a newly settled coral reef damselfish, Pomacentrus amboinensis. Individuals were tested for changes in seven behavioural traits in response to conspecific and heterospecific skin extracts. Additionally, we tested whether fish could learn to associate a previously novel chemical cue (i.e. simulated predator scent) with danger, after previously being exposed to a paired cue combining the conspecific skin extract with the novel scent. Fish exposed to conspecific skin extracts were found to significantly decreased their feeding rate whilst those exposed to heterospecific and control cues showed no change. Individuals were also able to associate a previously novel scent with danger after only a single previous exposure to the paired conspecific skin extract/novel scent cue. Our results indicate that chemical alarm cues play a large role in both threat detection and learned predator recognition during the early post-settlement period in coral reef fishes.  相似文献   

12.
13.
14.
《Biological Control》2010,55(3):270-275
The ability of the congeneric braconid parasitoids Cotesia sesamiae (Cameron) and Cotesia flavipes Cameron to discriminate between stemborer larval cues upon contact was studied using their natural hosts, namely the noctuid Busseola fusca (Fuller) and the crambid Chilo partellus (Swinhoe), respectively, and the pyralid non-host Eldana saccharina (Walker). When the natural host larvae were washed in distilled water, parasitoid behavior was similar to that displayed when in contact with E. saccharina, characterized by the absence of ovipositor insertion. When washed host or non-host larvae were bathed with water extracts of their natural host, the parasitoids showed a significant increase in ovipositor insertions. However, the water extracts of host-larvae deposited on cotton wool balls did not induce ovipositor insertion in either C. sesamiae or C. flavipes. Nevertheless, the extracts enabled the parasitoids to discriminate between natural and non-hosts as indicated by the intensive antennating of the former. For both parasitoids, frass was found to be important in short-range host recognition as indicated by differences in the time spent on antennating between frass sources. In addition, the regurgitants of B. fusca and C. partellus induced ovipositor insertion in C. flavipes only. These results indicated that C. sesamiae and C. flavipes used different chemical cues for acceptation and oviposition in a stemborer larva, and that B. fusca and C. partellus shared the same chemical cues to induce oviposition in C. flavipes.  相似文献   

15.
Prey organisms often use multiple sensory cues to gain reliable information about imminent predation threat. In this study we test if a freshwater fish increases the reliance on supplementary cues when the reliability of the primary cue is reduced. Fish commonly use vision to evaluate predation threat, but may also use chemical cues from predators or injured conspecifics. Environmental changes, such as increasing turbidity or water colour, may compromise the use of vision through changes in the optical properties of water. In an experiment we tested if changes in optical conditions have any effects on how crucian carp respond to chemical predator cues. In turbidity treatments we added either clay or algae, and in a brown water colour treatment we added water with a high humic content. We found that carp reduced activity in response to predator cues, but only in the turbidity treatments (clay, algae), whereas the response in the brown water treatment was intermediate, and not significantly different from, clear and turbid water treatments. The increased reliance on chemical cues indicates that crucian carp can compensate for the reduced information content from vision in waters where optical conditions are degraded. The lower effect in brown water may be due to the reduction in light intensity, changes in the spectral composition (reduction of UV light) or to a change in chemical properties of the cue in humic waters.  相似文献   

16.
17.
Antimalarial activity of arteether, a derivative of artemisinin (qinghaosu) against blood-induced infections of the highly synchronous Plasmodium vinckei petteri rodent species of malaria was evaluated in Swiss mice. A single subcurative dose of arteether of 2.2 mg/kg body weight was injected subcutaneously to mice, either during the prepatent period or during the patent infection, when different stages of the parasitic cycle were present in the blood. It was shown that rings and young trophozoites were the most susceptible stages to arteether. The drug had no effect on merozoites and little effect on mid-term trophozoites which is the stage most sensitive to chloroquine. The alcoholic solution (10% alcohol in sterile water) had an immediate effect while the oily solution (miglyol 840) was active between 3 and 21 hr after injection.  相似文献   

18.
Wen  Jian  Ueno  Takatoshi 《BioControl》2021,66(6):813-824

Predator non-consumptive effects (NCEs) have been well studied in many ecosystems and NCEs can alter the behavior, morphology and life history of prey, producing strong trait-mediated indirect effects (TMIEs) on host plants. However, studies involving the application of NCEs to control pests in the field, and instances of combined laboratory bioassay and field practice are rare. Here, we examine the development, reproduction and behavior of small brown planthoppers, Laodelphax striatellus (Fallén), when exposed to predator cues from caged predators (Paederus fuscipes Curtis), or predator body extracts (in solvents with different polarities) in the laboratory. Field foliage sprays of these extracts were also used to test their effects on the L. striatellus population and rice plant biomass. Nymph development and egg hatch rate in L. striatellus were not influenced, but adult longevity was shorter, and fecundity and weight gain were lower, when nymphs were exposed to the predator cues. Adults exposed to predator cues also gained less weight and laid fewer eggs. The poorer developmental and reproductive performances might result from lower activity levels observed in threatened L. striatellus. The field foliage sprays of predator cues decreased L. striatellus abundance and increased rice plant biomass, suggesting their possible application for pest control. Predator cues extracted using chloroform increased stronger NCEs and TMIEs, indicating their non-polar characteristics. Our studies advance the understanding of how NCEs shape the life history and behavior of L. striatellus and improve rice growth, laying new foundations for future research on novel pest control materials and methods.

  相似文献   

19.
We examined the use of social information in fruitfly larvae, which represent an ideal model system owing to their robust learning abilities, small number of neurons and well-studied neurogenetics. Focal larvae showed attraction to the distinct odour emanating from food occupied by other larvae. In controlled learning experiments, focal larvae preferred novel odours previously paired with food occupied by other larvae over novel odours previously paired with unoccupied food. When we gave groups of larvae a choice between food patches differing in quality, more larvae aggregated on the higher-quality food, suggesting that attraction to and learning about cues associated with other larvae can be beneficial. Furthermore, larvae were more likely to find the best available food patch in trials when that food patch was occupied by other larvae than in trials when that food patch was unoccupied. Our data suggest, however, that the benefits from joining others may be at least partially offset by the fitness costs of increased competition, because larvae reared in isolation did as well as or better than larvae reared in groups on three key fitness parameters: developmental rate, survival rate and adult dry body mass. Our work establishes fruitfly larvae as a highly tractable model species for further research on the mechanisms that modulate behaviour and learning in a social context.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号