首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
To identify genes that modulate Rho signalling during cytokinesis we tested the effect of overexpressing a set of 2190 genes on an eye phenotype caused by defective Rho activation. The resulting 112 modifier loci fell into three main classes: cell cycle genes, signalling effectors and metabolic enzymes. We developed a further series of genetic tests to refine the interactors into those most likely to modify Rho signalling during cytokinesis. In addition to a number of genes previously implicated in the Rho pathway during cytokinesis, we identified four novel primary candidates: cdc14, Pitslre, PDK1 and thread/diap1. cdc14 orthologs have, however, been implicated in cytokinesis in other organisms, as have molecules related to Thread/Diap1. The identification of several modifiers that are genetically redundant paralogs highlights the ability of overexpression screens to identify genes that are refractory to traditional loss-of-function approaches. Overexpression screens and sensitized phenotypes, therefore, may help identify the many factors that are expected to be involved in cytokinesis but have not been discovered by previous genetic screens.  相似文献   

3.
4.
Casso DJ  Liu S  Iwaki DD  Ogden SK  Kornberg TB 《Genetics》2008,178(3):1399-1413
Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway-patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn(+) finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity.  相似文献   

5.
The Notch pathway comprises a signal transduction cascade required for the proper formation of multiple tissues during metazoan development. Originally described in Drosophila for its role in nervous system formation, the pathway has attracted much wider interest owing to its fundamental roles in a range of developmental and disease-related processes. Despite extensive analysis, Notch signaling is not completely understood and it appears that additional components of the pathway remain to be identified and characterized. Here, we describe a novel genetic strategy to screen for additional Notch pathway genes. The strategy combines partial loss of function for pathway activity with Enhancer-promoter (EP)-induced overexpression of random loci across the dorsoventral wing margin. Mastermind (Mam) is a nuclear component of the Notch signaling cascade. Using a GAL4-UAS-driven dominant-negative form of Mam, we created a genotype that exhibits a completely penetrant dominant wing-nicking phenotype. This phenotype was assayed for enhancement or suppression after outcrossing to several thousand EP lines. The screen identified known components or modifiers of Notch pathway function, as well as several potential new components. Our results suggest that a genetic screen that combines partial loss of function with random gene overexpression might be a useful strategy in the analysis of developmental pathways.  相似文献   

6.
Neurofibrillary tangles (NFT) containing tau are a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD). NFT burden correlates with cognitive decline and neurodegeneration in AD. However, little is known about mechanisms that protect against tau-induced neurodegeneration. We used a cross species functional genomic approach to analyze gene expression in multiple brain regions in mouse, in parallel with validation in Drosophila, to identify tau modifiers, including the highly conserved protein puromycin-sensitive aminopeptidase (PSA/Npepps). PSA protected against tau-induced neurodegeneration in vivo, whereas PSA loss of function exacerbated neurodegeneration. We further show that human PSA directly proteolyzes tau in vitro. These data highlight the utility of using both evolutionarily distant species for genetic screening and functional assessment to identify modifiers of neurodegeneration. Further investigation is warranted in defining the role of PSA and other genes identified here as potential therapeutic targets in tauopathy.  相似文献   

7.
Therrien M  Morrison DK  Wong AM  Rubin GM 《Genetics》2000,156(3):1231-1242
kinase suppressor of Ras (ksr) encodes a putative protein kinase that by genetic criteria appears to function downstream of RAS in multiple receptor tyrosine kinase (RTK) pathways. While biochemical evidence suggests that the role of KSR is closely linked to the signal transduction mechanism of the MAPK cascade, the precise molecular function of KSR remains unresolved. To further elucidate the role of KSR and to identify proteins that may be required for KSR function, we conducted a dominant modifier screen in Drosophila based on a KSR-dependent phenotype. Overexpression of the KSR kinase domain in a subset of cells during Drosophila eye development blocks photoreceptor cell differentiation and results in the external roughening of the adult eye. Therefore, mutations in genes functioning with KSR might modify the KSR-dependent phenotype. We screened approximately 185,000 mutagenized progeny for dominant modifiers of the KSR-dependent rough eye phenotype. A total of 15 complementation groups of Enhancers and four complementation groups of Suppressors were derived. Ten of these complementation groups correspond to mutations in known components of the Ras1 pathway, demonstrating the ability of the screen to specifically identify loci critical for Ras1 signaling and further confirming a role for KSR in Ras1 signaling. In addition, we have identified 4 additional complementation groups. One of them corresponds to the kismet locus, which encodes a putative chromatin remodeling factor. The relevance of these loci with respect to the function of KSR and the Ras1 pathway in general is discussed.  相似文献   

8.
Programmed cell death (PCD) in the Drosophila retina requires activity of the irregular chiasmC-roughest (irreC-rst) gene. Loss-of-function mutations in irreC-rst block PCD during retinal development and lead to a rough eye phenotype in the adult. To identify genes that interact with irreC-rst and may be involved in PCD, we conducted a genetic screen for dominant enhancers and suppressors of the adult rough eye phenotype. We screened 150,000 mutagenized flies and recovered 170 dominant modifiers that localized primarily to the second and third chromosomes. At least two allelic groups correspond to previously identified death regulators, Delta and dRas1. Examination of retinae from homozygous viable mutants indicated two major phenotypic classes. One class exhibited pleiotropic defects while the other class exhibited defects specific to the cell population that normally undergoes PCD.  相似文献   

9.
10.
Spinocerebellar ataxia type 1 (SCA1) is one of several neurological disorders caused by a CAG repeat expansion. In SCA1, this expansion produces an abnormally long polyglutamine tract in the protein ataxin-1. Mutant polyglutamine proteins accumulate in neurons, inducing neurodegeneration, but the mechanism underlying this accumulation has been unclear. We have discovered that the 14-3-3 protein, a multifunctional regulatory molecule, mediates the neurotoxicity of ataxin-1 by binding to and stabilizing ataxin-1, thereby slowing its normal degradation. The association of ataxin-1 with 14-3-3 is regulated by Akt phosphorylation, and in a Drosophila model of SCA1, both 14-3-3 and Akt modulate neurodegeneration. Our finding that phosphatidylinositol 3-kinase/Akt signaling and 14-3-3 cooperate to modulate the neurotoxicity of ataxin-1 provides insight into SCA1 pathogenesis and identifies potential targets for therapeutic intervention.  相似文献   

11.
12.
13.
Studies in the fly, Drosophila melanogaster, have revealed that several signaling pathways are important for the regulation of growth. Among these, the insulin receptor/phosphoinositide 3-kinase (PI3K) pathway is remarkable in that it affects growth and final size without disturbing pattern formation. We have used a small-wing phenotype, generated by misexpression of kinase-dead PI3K, to screen for novel mutations that specifically disrupt organ growth in vivo. We identified several complementation groups that dominantly enhance this small-wing phenotype. Meiotic recombination in conjunction with visible markers and single-nucleotide polymorphisms (SNPs) was used to map five enhancers to single genes. Two of these, nucampholin and prp8, encode pre-mRNA splicing factors. The three other enhancers encode factors required for mRNA translation: pixie encodes the Drosophila ortholog of yeast RLI1, and RpL5 and RpL38 encode proteins of the large ribosomal subunit. Interestingly, mutations in several other ribosomal protein-encoding genes also enhance the small-wing phenotype used in the original screen. Our work has therefore identified mutations in five previously uncharacterized Drosophila genes and provides in vivo evidence that normal organ growth requires optimal regulation of both pre-mRNA splicing and mRNA translation.  相似文献   

14.
15.
Genetic modifiers of tauopathy in Drosophila   总被引:6,自引:0,他引:6  
Shulman JM  Feany MB 《Genetics》2003,165(3):1233-1242
In Alzheimer's disease and related disorders, the microtubule-associated protein Tau is abnormally hyperphosphorylated and aggregated into neurofibrillary tangles. Mutations in the tau gene cause familial frontotemporal dementia. To investigate the molecular mechanisms responsible for Tau-induced neurodegeneration, we conducted a genetic modifier screen in a Drosophila model of tauopathy. Kinases and phosphatases comprised the major class of modifiers recovered, and several candidate Tau kinases were similarly shown to enhance Tau toxicity in vivo. Despite some clinical and pathological similarities among neurodegenerative disorders, a direct comparison of modifiers between different Drosophila disease models revealed that the genetic pathways controlling Tau and polyglutamine toxicity are largely distinct. Our results demonstrate that kinases and phosphatases control Tau-induced neurodegeneration and have important implications for the development of therapies in Alzheimer's disease and related disorders.  相似文献   

16.
17.
Oxalic acid is an important virulence factor produced by phytopathogenic filamentous fungi. In order to discover yeast genes whose orthologs in the pathogen may confer self-tolerance and whose plant orthologs may protect the host, a Saccharomyces cerevisiae deletion library consisting of 4,827 haploid mutants harboring deletions in nonessential genes was screened for growth inhibition and survival in a rich medium containing 30 mM oxalic acid at pH 3. A total of 31 mutants were identified that had significantly lower cell yields in oxalate medium than in an oxalate-free medium. About 35% of these mutants had not previously been detected in published screens for sensitivity to sorbic or citric acid. Mutants impaired in endosomal transport, the rgp1Delta, ric1Delta, snf7Delta, vps16Delta, vps20Delta, and vps51Delta mutants, were significantly overrepresented relative to their frequency among all verified yeast open reading frames. Oxalate exposure to a subset of five mutants, the drs2Delta, vps16Delta, vps51Delta, ric1Delta, and rib4Delta mutants, was lethal. With the exception of the rib4Delta mutant, all of these mutants are impaired in vesicle-mediated transport. Indirect evidence is provided suggesting that the sensitivity of the rib4Delta mutant, a riboflavin auxotroph, is due to oxalate-mediated interference with riboflavin uptake by the putative monocarboxylate transporter Mch5.  相似文献   

18.
19.
Sleep and Biological Rhythms - A high-density oligonucleotide probe array (GeneChip) has been used to learn how gene expression is globally regulated by the circadian clock mechanism. Here I review...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号