首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moran JM  Enna SJ  McCarson KE 《Life sciences》2001,68(19-20):2287-2295
GABA(B) receptors are heterodimers coupled to G-proteins. The present study was undertaken to investigate activation of GABA(B) receptors in cerebral cortex and spinal cord using [35S]GTPgammaS binding assays, a direct measure of G-protein activity. The results revealed that the GABA(B) agonist baclofen stimulates GTPgammaS binding in cerebral cortex, with an ED50 of 50microM. This response is blocked by the GABA(B) receptor antagonist CGP 55845A (100nM). In contrast, baclofen-stimulated GTPgammaS binding was not observed in adult spinal cord tissue under similar incubation conditions, or after varying magnesium, calcium, GDP, [35S]GTPgammaS, or membrane concentrations in the assay medium. Stimulation of adult rat spinal cord muscarinic receptors did result in a concentration-related increase in [35S]GTPgammaS binding. Baclofen-stimulated GTPgammaS binding in adult spinal cord did not appear after peripheral inflammation, despite significant increases in GABA(B) subunit mRNA levels. As opposed to adult, appreciable GTPgammaS binding was observed in membranes prepared from spinal cords of rats within the first 14 days of postnatal development, suggesting that GABA(B) receptor function in the rat spinal cord is developmentally regulated. The results indicate that GABA(B) receptors may not be coupled to G-proteins in the adult rat spinal cord, or couple in a way that differs from that in newborns or adult cerebral cortex.  相似文献   

2.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

3.
The ability of gamma-aminobutyric acid (GABA) and glycine (Gly) to modulate each other's release was studied in synaptosomes from rat spinal cord, cerebellum, cerebral cortex, or hippocampus, prelabeled with [3H]GABA or [3H]Gly and exposed in superfusion to Gly or to GABA, respectively. GABA increased the spontaneous outflow of [3H]Gly (EC50, 20.8 microM) from spinal cord synaptosomes. Neither muscimol nor (-)-baclofen, up to 300 microM, mimicked the effect of GABA, which was not antagonized by either bicuculline or picrotoxin. However, the effect of GABA was counteracted by the GABA uptake inhibitors nipecotic acid and N-(4,4-diphenyl-3-butenyl)nipecotic acid. Moreover, the GABA-induced [3H]Gly release was Na+ dependent and disappeared when the medium contained 23 mM Na+. The effect of GABA was Ca2+ independent and tetrodotoxin insensitive. Conversely, Gly enhanced the outflow of [3H]GABA from rat spinal cord synaptosomes (EC50, 100.9 microM). This effect was insensitive to both strychnine and 7-chlorokynurenic acid, antagonists at Gly receptors, but it was strongly Na+ dependent. Also, the Gly-evoked [3H]GABA release was Ca2+ independent and tetrodotoxin insensitive. GABA increased the outflow of [3H]Gly (EC50, 11.1 microM) from cerebellar synaptosomes; the effect was not mimicked by either muscimol or (-)-baclofen nor was it prevented by bicuculline or picrotoxin. The GABA effect was, however, blocked by GABA uptake inhibitors and was Na+ dependent. Gly increased [3H]GABA release from cerebellar synaptosomes (EC50, 110.7 microM) in a strychnine- and 7-chlorokynurenic acid-insensitive manner. This effect was Na+ dependent. The effects of GABA on [3H]Gly release seen in spinal cord and cerebellum could be reproduced also with cerebrocortical synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Abstract— Glycine was a substrate for d -amino acid oxidase purified from extracts of cat spinal cord and sheep cerebellum. d -Aspartate and N -methyl- d -aspartate were oxidized at a rate similar to that of glycine by the purified sheep cerebellum extract; d -α-alanine and d -serine were oxidized appreciably faster than glycine, while GABA and d -glutamate were not oxidized at a measurable rate. p -Mercuribenzoate and kojate inhibited the oxidation of glycine by the purified sheep cerebellum extract.
d -Amino acid oxidase activity was higher in the grey than in the white matter of cat spinal cord, while the reverse was true for the cerebral cortex; the activity in the cord and cerebral cortex was much lower than that in the cerebellum.  相似文献   

5.
Abstract— High affinity uptake systems for GABA into slices of cerebral cortex and for glycine into slices of spinal cord have been demonstrated in rats of 1 and 10 days postnatal age and compared with the systems in tissue slices from adult rats. For both systems there was an increase in the maximal rate of uptake of the substrate with development. For glycine uptake there was no significant change in apparent Km during development, whereas there was a four-fold increase in the apparent Km for GABA uptake. There were some changes with development in the apparent substrate specificity of the two systems suggesting increased specificity with maturation. Bicuculline and strychnine, antagonists of the postsynaptic inhibitory actions of GABA and glycine, produced convulsions in 1-, 2- and 10-day-old rats following intraperitoneal injection of doses somewhat lower than those required to convulse adult rats. These findings are consistent with other evidence that glycine and GABA are functioning as inhibitory transmitters at least as soon as 1 day after birth.  相似文献   

6.
The spontaneous and potassium-stimulated release of endogenous taurine and gamma-aminobutyric acid (GABA) from cerebral cortex and cerebellum slices from adult and developing mice was studied in a superfusion system. The spontaneous release of GABA was of the same magnitude in slices from adult and developing mice, but the spontaneous release of taurine was considerably greater in the adults. The potassium-stimulated release of GABA from cerebral cortex slices was about five times greater in adult than in 3-day-old mice, but the potassium-stimulated release of taurine was more than six times greater in 3-day-old than in adult mice. In cerebellar slices from 7-day-old mice, potassium stimulation also evoked a massive release of taurine, whereas the evoked release from slices from adult mice was rather negligible. Also in cerebellar slices the potassium-stimulated release of GABA exhibited the opposite quantitative pattern. The stimulated release of both GABA and taurine was partially calcium dependent. The results suggest that taurine may be an important regulator of excitability in the developing brain.  相似文献   

7.
It is widely accepted that glycine transporters of the GLYT1 type are situated on astrocytes whereas GLYT2 are present on glycinergic neuronal terminals where they mediate glycine uptake. We here used purified preparations of mouse spinal cord nerve terminals (synaptosomes) and of astrocyte-derived subcellular particles (gliosomes) to characterize functionally and morphologically the glial versus neuronal distribution of GLYT1 and GLYT2. Both gliosomes and synaptosomes accumulated [3H]GABA through GAT1 transporters and, when exposed to glycine in superfusion conditions, they released the radioactive amino acid not in a receptor-dependent manner, but as a consequence of glycine penetration through selective transporters. The glycine-evoked release of [3H]GABA was exocytotic from synaptosomes but GAT1 carrier-mediated from gliosomes. Based on the sensitivity of the glycine effects to selective GLYT1 and GLYT2 blockers, the two transporters contributed equally to evoke [3H]GABA release from GABAergic synaptosomes; even more surprising, the 'neuronal' GLYT2 contributed more efficiently than the 'glial' GLYT1 to mediate the glycine effect in [3H]GABA releasing gliosomes. These functional results were largely confirmed by confocal microscopy analysis showing co-expression of GAT1 and GLYT2 in GFAP-positive gliosomes and of GAT1 and GLYT1 in MAP2-positive synaptosomes. To conclude, functional GLYT1 are present on neuronal axon terminals and functional GLYT2 are expressed on astrocytes, indicating not complete selectivity of glycine transporters in their glial versus neuronal localization in the spinal cord.  相似文献   

8.
The binding of the triazolopyridazine CL 218,872 to central benzodiazepine receptors identified with [3H]Ro 15-1788 was studied in extensively washed homogenates of rat spinal cord and cerebral cortex. CL 218,872 displacement curves were shallow in both spinal cord (nH = 0.67) and cortex (nH = 0.54), suggesting the presence of type 1 and type 2 benzodiazepine receptors in both tissues. CL 218,872 had lower affinity in spinal cord (IC50 = 825 nM) than cortex (IC50 = 152 nM), possibly reflecting the presence of fewer type 1 sites in the cord. Activating gamma-aminobutyric acid (GABA) receptors with 10 microM muscimol resulted in a two- to threefold increase in CL 218,872 affinity in both tissues without changes in the displacement curve slope. This indicates that GABA enhances CL 218,872 affinity for both type 1 and type 2 sites in both spinal cord and cerebral cortex.  相似文献   

9.
Amobarbital and pentobarbital anesthesia inhibited the potassium-stimulated, Ca-dependent release of -aminobutyric acid (GABA) from rat cerebral cortex slices during incubation in vitro. Inhibition of GABA release was not found when slices were prepared from rats shortly after they awakened from amobarbital anesthesia. Phenobarbital anesthesia did not affect the release of GABA.  相似文献   

10.
Abstract— Fifty-two substances were tested as inhibitors of the uptake of [3H]GABA in slices of rat cerebral cortex. Among GABA analogues tested, only the 2-fluoro, 3-hydroxy and 2-amino compounds had affinities for the uptake mechanism comparable to that of GABA. [3H]GABA uptake was also potently inhibited by p -chloromercuriphenylsulphonate, N -ethylmaleimide, chlorpromazine and haloperidol. No inhibitors were found to act in a competitive manner with respect to GABA. [3H]GABA uptake was also examined in homogenates of cerebral cortex and other regions of CNS. There was a rapid uptake of [3H]GABA into particles when homogenate samples were incubated with the labelled amino acid; this uptake had similar kinetic properties and inhibitor sensitivity to that observed in slices of intact tissue. Density gradient centrifugation experiments indicated that the particles responsible for the uptake of [3H]GABA in homogenates were probably synaptosomes. Uptake of [3H]GABA also occurred in slices and homogenates of rat spinal cord, and evidence was obtained by the simultaneous labelling of homogenates with [14C]glycine and [3H]GABA that these two amino acids were taken up by different nerve terminals in this region.  相似文献   

11.
Slices of guinea-pig cerebral cortex were used to investigate the effects of the antispastic drug β-(p-chlorophenyl)-γ-aminobutyrate (Baclofen, Lioresal) on the release and metabolism of several amino acids. Electrical stimulation of slices evoked (1) a relatively large release, probably from nerve terminals, of 14C-labelled tissue glumate, aspartate and γ-aminobutyrate (GABA) synthesized via metabolism of D-[U-14C]glucose and (2) a relatively small release, probably not from nerve terminals, of 14C-labelled tissue alanine and threonine-serine-glutamine and of exogenous radiolabeled glutamate, aspartate, GABA and α-aminoisobutyrate that had been taken up from the medium. Baclofen (4μM) preferentially inhibited the release of 14C-labelled tissue glutamate and aspartate. It had no effect on the concentrations and specific radio-activities of most of the labelled tissue amino acids in the slices. However, it increased the turnover of 14C-labelled tissue glycine approx 4-fold and elevated the specific radio activity of tissue alanine by 40%. It was concluded that Baclofen affects transmission not by modulating the release of the inhibitory amino acid GABA, but by selectively suppressing the release of the excitatory amino acids glutamate and aspartate from nerve terminals. Provided that this action obtains in the spinal cord, it may at least partly underlie the antispastic action of Baclofen as glutamate and aspartate are presumed to be the transmitters released from terminals of non-nociceptive primary afferent fibers and excitatory interneurons, respectively. The Baclofen-induced increase in glycine turnover suggests an additional effect on inhibitory glycinergic interneurons in the spinal cord.  相似文献   

12.
Abstract— [3H]β-Alanine was accumulated by frog spinal cord slices by two transport components with estimated Km values of 31 M ('high-affinity') and 11 HIM ('low affinity') respectively. The high affinity uptake exhibited sodium ion and energy dependence, temperature sensitivity, had a very low Vmax (10.4 nmol/g/min) compared to GABA and glycine, was competitively inhibited by GABA (Kt 2 M), and was significantly reduced by the presence of glycine and of taurine in the incubating medium.
When slices preloaded with [3H]β-alanine were superfused with medium containing depolarizing concentrations of potassium ions, there was a small, but consistent, increase in [3H]β-alanine efflux: 1.4 times prestimulation rates in 40 mM potassium. When the superfusate was altered by omission of calcium and addition of concentrations of magnesium (10 mm), manganese (1 mM), and cobalt (1 mM) ions sufficient to block reflex transmission in the isolated in vitro frog cord, the potassium-evoked release was not blocked. Release was decreased by lanthanum ions (1 mM). Release of [3H]GABA and [3H]glycine in parallel experiments was inhibited by magnesium, manganese, cobalt and lanthanum. Veratridine significantly increased the release of [3H]GABA and [3H]glycine but not of [3H]β-alanine.
These observations demonstrate the non-specificity of β-alanine uptake and the unconventional nature of the calcium-dependence of β-alanine release and therefore do not lend support to the hypothesis that β-alanine functions as a neurotransmitter in frog spinal cord.  相似文献   

13.
Glycine and GABA are likely co-transmitters in the spinal cord. Their possible interactions in presynaptic terminals have, however, not been investigated. We studied the effects of glycine on GABA release using superfused mouse spinal cord synaptosomes. Glycine concentration dependently elicited [(3)H]GABA release which was insensitive to strychnine or 5,7-dichlorokynurenic acid, but was Na(+) dependent and sensitive to the glycine uptake blocker glycyldodecylamide. The glycine effect was external Ca(2+) independent, but was reduced when intraterminal Ca(2+) was chelated with 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetracetic acid or depleted with thapsigargin, or when vesicular storage was impaired with bafilomycin. Glycine-induced [(3)H]GABA release was prevented, in part, by blocking GABA transport. The glycine effect was halved by sarcosine, a GLYT1 substrate/inhibitor, or by amoxapine, a GLYT2 blocker, and abolished by a mixture of the two. The sensitivity to sarcosine, used as a transporter inhibitor or substrate, persisted in synaptosomes prelabelled with [(3)H]GABA in the presence of beta-alanine, excluding major gliasome involvement. To conclude, in mice spinal cord, transporters for glycine (both GLYT1 and GLYT2) and for GABA coexist on the same axon terminals. Activation of the glycine transporters elicits GABA release, partly by internal Ca(2+)-dependent exocytosis and partly by transporter reversal.  相似文献   

14.
The metabolic properties of synaptosomes prepared from the crude mitochondrial and crude nuclear fractions of the medulla/spinal cord were studied. They showed similar properties, glycine being enriched in the latter. The respiration and glycolysis rates were similar to the cortical synaptosomes previously studied. A major difference from cortical synaptosomes was the enrichment of glycine. Medulla/spinal cord synaptosome suspensions and beds responded metabolically to electrical pulses; respiration and lactate production increased by 50 and 25 per cent respectively. Differential release of glutamate, aspartate, GABA and glycine occurred during both electrical stimulation, and when potassium in the medium was increased. Omitting calcium and adding EGTA greatly reduced this response with both forms of stimulation. The electrically induced release of GABA was completely reversible whilst that of aspartate and glycine was only partially reversible. The electrically stimulated release of glycine and other amino acids was reduced in synaptosomes prepared from rats treated intramuscularly with tetanus toxin 15 hr before death. No action of the toxin was seen on synaptosomes incubated with tetanus toxin after preparation.  相似文献   

15.
A study was made of the functional potentialities of synaptosomes isolated from the brain cortex and lumbar enlargement of the spinal cord. The yield of synaptosomes from the brain cortex amounted to 10 mg (with reference to protein) from 1 g of wet tissue, and that of synaptosomes from the spinal cord was equal to 1/3 of the yield from the brain, with the preparation being strongly contaminated with myelin scraps. Brain synaptosomes were marked by high level of respiration whose magnitude was affected by the agents (ouabain, high concentrations of K+ and benzylpenicillin) that change ion membrane transport. Synaptosomes maintained higher GABA gradient across the plasmatic membrane. Ouabain and potassium depolarization produced a considerable release of GABA and 3H-GABA into the incubation medium. A conclusion is made that the method of Hajos should be rather used for rapid isolation of the synaptosomal fraction from the rat brain cortex.  相似文献   

16.
Bidirectional Movement of γ-Aminobutyric Acid in Rat Spinal Cord Slices   总被引:1,自引:1,他引:0  
Abstract: The bidirectional movement of GABA (γ-aminobutyric acid) was studied in slices of rat spinal cord which were incubated in small volumes of medium. The appearance in the medium of endogenous GABA and the disappearance from the medium of [14C]GABA were used to calculate the rates of unidirectional uptake and unidirectional release of GABA. Under these conditions, no net uptake of GABA was observed when slices were incubated in media containing concentrations of GABA as high as 25 μm . Elevated potassium (60 mm ) stimulated the unidirectional release of endogenous GABA from spinal cord slices by a calcium-dependent process. Ouabain (0.1 mm ) more than doubled the unidirectional release of endogenous GABA in a calcium-independent manner, while unidirectional uptake was inhibited by 44%. Nipecotic acid (1.0 mm ) stimulated unidirectional release and inhibited unidirectional uptake of GABA.  相似文献   

17.
Inherited congenital myoclonus (ICM) of Poll Hereford cattle is a neurological disease in which there are severe alterations in spinal cord glycine-mediated neurotransmission. There is a specific and marked decrease, or defect, in glycine receptors and a significant increase in neuronal (synaptosomal) glycine uptake. Here we have examined the characteristics of the cerebral gamma-aminobutyric acid (GABA) receptor complex, and demonstrate that the malfunction of the spinal cord inhibitory system is accompanied by a change in the major inhibitory system in the cerebral cortex. In synaptic membrane preparations from ICM calves, both high-and low-affinity binding sites for the GABA agonist [3H]muscimol were found (KD = 9.3 +/- 1.5 and 227 +/- 41 nM, respectively), whereas only the high-affinity site was detectable in controls (KD = 14.0 +/- 3.1 nM). The density and affinity of benzodiazepine agonist binding sites labelled by [3H]diazepam were unchanged, but there was an increase in GABA-stimulated benzodiazepine binding. The affinity for t-[3H]butylbicyclo-o-benzoate, a ligand that binds to the GABA-activated chloride channel, was significantly increased in ICM brain membranes (KD = 148 +/- 14 nM) compared with controls (KD = 245 +/- 33 nM). Muscimol-stimulated 36Cl- uptake was 12% greater in microsacs prepared from ICM calf cerebral cortex, and the uptake was more sensitive to block by the GABA antagonist picrotoxin. The results show that the characteristics of the GABA receptor complex in ICM calf cortex differ from those in cortex from unaffected calves, a difference that is particularly apparent for the low-affinity, physiologically relevant GABA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract— A method was developed for perfusion of the spinal subarachnoid space in the rat. Bidirectional steady-state fluxes of [14C]glycine between spinal fluid and plasma were measured. [14C]glycine clearance from spinal fluid was 5-fold greater than its clearance from plasma. Glycine was transported out of spinal fluid by a saturable process, and the rate of transport was unaffected by the other depressant amino acids, GABA, β-alanine, and taurine. Perfused [14C]glycine and [3H]GABA distributed in an intracellular compartment in spinal cord. The preparation should be useful for study of the release of these inhibitory amino acids from the intact spinal cord.  相似文献   

19.
Parameters affecting the binding of [3H]glycine to membrane fractions isolated from the cerebral cortex, midbrain, cerebellum, medulla oblongata, and spinal cord of the rat were investigated in a Na+-free medium. A [3H]glycine binding assay was established in which the binding was specific, saturable, pH-sensitive, and reversible. Conditions were chosen in an effort to minimize binding to glycine uptake sites. From data on specific [3H]glycine binding Scatchard plots were prepared and the KD and Bmax values were calculated. Two glycine binding sites (high and low affinity) were identified only in the medulla (KD: 44, 211 nM; Bmax: 361, 1076 fmol/mg protein) and spinal cord (KD: 19, 104 nM; Bmax: 105, 486 fmol/mg protein). The ranges of the KD and Bmax values for the other three areas studied were 59 to 144 nM and 882 to 3401 fmol/mg protein, respectively. When the glycine content of each area, expressed as fmol/neuron, was plotted against the respective KD (high affinity), a negative correlation was found (r = --0.90; p less than 0.05). A similar negative correlation was found between the glycine content and Bmax (r = --0.88; p less than 0.05). Hill plots indicated a slope of essentially 1.0 for all areas. GABA, taurine, strychnine, diazepam, bicuculline, and imipramine had little or no effect on [3H]glycine binding.  相似文献   

20.
In a cortical P2 fraction, [14C]gamma-aminobutyric acid ([14C]GABA), [14C]glycine, [14C]taurine, and [14C]glutamic and [14C]aspartic acids are transported by four separate high-affinity transport systems with L-glutamic acid and L-aspartic acid transported by a common system. GABA transport in cortical synaptosomal tissue occurs by one high-affinity system, with no second, low-affinity, transport system detectable. Only one high-affinity system is observed for the transport of aspartic/glutamic acids; as with GABA transport, no low-affinity transport is detectable. In the uptake of taurine and glycine (cerebral cortex and pons-medulla-spinal cord) both high- and low-affinity transport processes could be detected. The high-affinity GABA and high-affinity taurine transport classes exhibit some overlap, with the GABA transport system being more specific and having a much higher Vmax value. High-affinity GABA transport exhibits no overlap with either the high-affinity glycine or the high-affinity aspartic/glutamic acid transport class, and in fact they demonstrate somewhat negative correlations in inhibition profiles. The inhibition profiles of high-affinity cortical glycine transport and those of high-affinity cortical taurine and aspartic/glutamic acid transport also show no significant positive relationship. The inhibition profiles of high-affinity glycine transport in the cerebral cortex and in the pons-medulla-spinal cord show a significant positive correlation with each other; however, high-affinity glycine uptake in the pons-medulla-spinal cord is more specific than that in the cerebral cortex. The inhibition profile of high-affinity taurine transport exhibits a nonsignificant negative correlation with that of the aspartic/glutamic acid transport class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号