首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Minimal Deviation Hepatoma 7288 C cells were cultured in confluent layer with labeled stearic, oleic, linoleic and-linolenic acids. The kinetics of incorporation and conversion to higher homologs was studied. The maximum amounts incorporated in nmoles per mg of cellular protein for stearic, oleic, linoleic and-linolenic acids were 39, 115.6, 90 and 230 respectively.-linolenic acid was converted to octadeca-6,9,12,15-tetraenoic acid (18:4), eicosa-11,14,17-trienoic acid (20:3), eicosa-8,11,14,17 and 5,11,14,17-tetraenoic acids (20:4) and eicosa-5,8,11,14,17-pentaenoic acid (20:5), and also to myristic, palmitic, palmitoleic, stearic and oleic acids. By a mathematical approach, the endogenous pool size of-linolenic acid available for conversion to eicosa-5,8,11,14,17-pentaenoic acid, and the capacity of the cell to convert-linolenic acid to eicosa-5,8,11,14,17-pentaenoic acid, were calculated. Both values decreased when the cells were preincubated with unlabeled-linolenic acid.Dedicated to ProfessorLuis F. Leloir on the occasion of his 70th birthday.  相似文献   

2.
The present work was undertaken to study the effect of anti-insulinic and glycogenolytic factors on the oxidative desaturation of fatty acids. The effects of glucagon and dibutyryl cyclic AMP on the desaturation of linoleic acid to gamma-linolenic acid, alpha-linolenic acid to octadeca-6,9,12,15-tetraenoic acid, stearic acid to oleic acid, and eicosa-8,11,14-trienoic acid to eicosa-5,8,11,14-tetraenoic acid by rat liver microsomal preparations were investigated. Fasted rats had low desaturating activity, but refeeding a fat-free diet enhanced the activity. Administration of glucagon or dibutyryl cyclic AMP abolished the increase of the 6-desaturase activity elicited by refeeding. However, a similar effect on the 9-desaturase and 5-desaturase activity was not observed. The relationship between these effects and glucose metabolism is discussed.  相似文献   

3.
We investigated the effects of stearic acid (saturated), oleic acid (monounsaturated), linoleic acid (n-6 polyunsaturated), and alpha-linolenic acid (n-3 polyunsaturated) on lipid metabolism in a hepatocyte-derived cell line, HepG2. HepG2 cells were cultured in medium supplemented with either stearic acid (0.1% w/v), oleic acid (0.1% v/v), linoleic acid (0.1% v/v), or alpha-linolenic acid (0.1% v/v). After 24 h, expression of lipid metabolism-associated genes was evaluated by real-time PCR. Alpha-linolenic acid showed a suppressive effect on the hepatic fatty acid de novo synthesis and fatty acid oxidation pathways, while linoleic acid also showed a tendency to suppress these pathways although the effect was weaker. Moreover, alpha-linolenic acid enhanced the expression of enzymes associated with reactive oxygen species (ROS) elimination. In contrast, oleic acid tended to promote fatty acid synthesis and oxidation. In conclusion, alpha-linolenic acid and linoleic acid may be expected to ameliorate hepatic steatosis by downregulating fatty acid de novo synthesis and fatty acid oxidation, and by upregulating ROS elimination enzymes. Oleic acid had no distinct effects for improving steatosis or oxidative stress.  相似文献   

4.
The oxidative desaturation of [1-(14)C]eicosa-8,11-dienoic acid to eicosa-5,8,11-trienoic acid by rat liver microsomes was studied, and the kinetic conditions appropriate to measure the specific activity of the enzyme were determined. A comparative study of the effects of a balanced diet and essential fatty acid-free diets on the oxidative desaturation of oleic and linoleic acids at the 6,7 position and the oxidative desaturation of eicosadienoic acid at the 5,6 position were made. Eicosadienoic acid showed a higher conversion than oleic acid for all the diets. The conversion of oleic and linoleic acids to Delta6 acids was equally increased by fat-free diets with or without added methyl palmitate, whereas the oxidative 5-desaturation of eicosadienoic acid at the 5,6 position was not changed. The effect was apparently independent of the amount of endogenous free fatty acids. The results suggest that the rate-limiting and principal regulatory step in the biosynthesis of eicosa-5,8,11-trienoic acid is the 6-desaturation of oleic acid. The 5-desaturation of eicosadienoic acid was increased by a protein diet and decreased by alloxan diabetes to a lesser extent than the 6-desaturation of linoleic acid. The 5-desaturation of eicosadienoic acid would constitute a secondary regulatory step.  相似文献   

5.
This paper reports the results of our analysis of the impact high levels of de novo fatty acids have on the proportions of essential and non-essential fatty acids in human milk lipids. The data for seven fatty acids (linoleic, alpha-linolenic, arachidonic (AA), docosahexaenoic (DHA), palmitic, stearic and oleic) were derived from several studies conducted in Nigeria. The proportion by weight of each of these fatty acids was plotted versus the proportion of C10-14 fatty acids. As the proportion of C10-14 fatty acids increased from 15 to 65%, there was not a proportional decrease in the percentages of all seven fatty acids, but, instead, preferential incorporation of the essential fatty acids, AA and DHA into the triacylglycerol component of the milk. At the same time, the proportions of stearic and oleic acid declined by 69% and 86%, respectively. However, the proportions of linoleic acid, palmitic acid, DHA, AA and alpha-linolenic acid, in milk lipids decreased by only 44%, 40%, 39%, 28% and 2.3%, respectively. These observations indicate that as the contribution of C10-14 fatty acids increases, essential fatty acids are preferentially incorporated into milk triacylglycerols at the expense of oleic acid and stearic acid.  相似文献   

6.
This work studies the phospholipid and fatty acid composition in hake brain and spinal cord and in sea bass brain. Fluorescence anisotropy of phospholipid vesicles labeled with 1,6-diphenyl hexatriene was measured to investigate the associated dynamic properties. In all tissues studied, phosphatidylcholine and phosphatidylethanolamine were the major constituents with minor contributions of phosphatidylserine, phosphatidylinositol and sphingomyelin. Fatty acids belong to the n-9 and n-3 series exclusively. Phosphatidylinositol from hake spinal cord and phosphatidylethanolamine and phosphatidylserine from hake brain contain the greatest percentages of eicosa-5,8,11,14,17-pentaenoic (20:5) and docosa-4,7,10,13,16,19-hexaenoic (22:6), respectively. For all fractions studied the total content of saturated fatty acids increases in the order of hake spinal cord, hake brain, sea bass brain together with a decrease in the sum of monounsaturated fatty acids. The comparison between fluorescence anisotropy values and fatty acid composition clearly demonstrates that saturated acids and 20:5 and 22:6 exert a rigidizing effect.  相似文献   

7.
The in vivo and in vitro effect of ACTH on the biosynthesis of polyunsaturated fatty acid of rat adrenal gland and liver was studied. The administration of ACTH to intact rats produced a significant decrease in the conversion of [1-14C]linoleic acid to gamma-linolenic acid, [1-14C]alpha-linolenic acid to octadeca-6,9,12,15-tetraenoic acid, and [1-14C]eicosa-8,11,14-trienoic acid to arachidonic acid in liver and adrenal microsomes. Isolated adrenocortical cells and hepatocytes obtained from animals treated with ACTH showed a decrease in the incorporation and desaturation of exogenous [1-14C]eicosa-8,11,14-trienoic acid. The addition of ACTH to the incubation medium of adrenocortical cells and hepatocytes isolated from untreated rats also caused a decrease in delta 5 desaturation activity. The effect of ACTH on adrenal and liver desaturases could be produced as a consequence of the release of glucocorticoids, already measured in the experiments. However, the in vitro experiments carried out with hepatocytes isolated from untreated rats, where corticosterone was absent, indicated that ACTH can depress delta 5 desaturation per se.  相似文献   

8.
AIMS: To identify a ruminal isolate which transforms oleic, linoleic and linolenic acids to stearic acid and to identify transient intermediates formed during biohydrogenation. METHODS AND RESULTS: The stearic acid-forming bacterium, isolated from the rumen of a grazing cow, was a Gram-negative motile rod which utilized a range of growth substrates including starch and pectin but not cellulose or xylan. From its 16S rRNA gene sequence, the isolate was identified as a strain of Butyrivibrio hungatei. During conversion of linoleic acid, 9,11-conjugated linoleic acid formed as a transient intermediate before trans-vaccenic acid accumulated together with stearic acid. Unlike previously studied ruminal biohydrogenating bacteria, B. hungatei Su6 was able to convert alpha-linolenic acid to stearic acid. Linolenic acid was converted to stearic via conjugated linolenic acid, linoleic acid and trans-vaccenic acid as intermediates. Oleic acid and cis-vaccenic acid were converted to a series of trans monounsaturated isomers as well as stearic acid. An investigation of these isomers indicated that mixed trans positional isomers are intermediate in the biohydrogenation of cis monounsaturated fatty acids to stearic acid. CONCLUSION: This, the first rigorous identification and characterization of a ruminal bacterium which forms stearic acid, shows that B. hungatei plays an important role in unsaturated fatty acid transformations in the rumen. SIGNIFICANCE AND IMPACT OF THE STUDY: Biohydrogenating bacteria which convert C18 unsaturated fatty acids to stearic acid have not been available for study for many years. Access to B. hungatei Su6 now provides a fresh opportunity for understanding biohydrogenation mechanisms and rumen processes which lead to saturated fat in ruminant products.  相似文献   

9.
The effect of streptozotocin-induced diabetes on the fatty acid composition and metabolism in testes of rats on diets varying in protein content has been investigated. The protein content of the diet (40, 20, 5%) had little or no effect on essential fatty acid metabolism during the 2 weeks following injection of streptozotocin, but the 5% diet resulted in a high rate of mortality for diabetic rats. Increased amounts of octadeca-9,12-dienoic (linoleic or 18:2) acid and of eicosa-8,11,14-trienoic (dihomo-gamma-linolenic or 20:3) acid and decreased amounts of eicosa-5,8,11,14-tetraenoic (arachidonic or 20:4) acid were observed in testes of some but not all diabetic compared to pair-fed control rats 2 weeks after injection of streptozotocin. Incorporation of 14C from [14C]18:2 into testicular lipids of these rats was determined 26 hr after intratesticular injection. In some rats there was a greater amount of 14C in eicosa-11,14-dienoic acid (dihomolinoleic acid or 20:2) and 20:3 and less 14C in 20:4 of testes of diabetic than in those of control rats. The suggested impairment in conversion of 18:2 to 20:4 was studied further by using [14C]20:3 as the substrate for intratesticular injection. Four hours after administration of the [14C]polyene there was more 14C in 20:3 and less 14C in 20:4 and in docosa-7,10,13,16-tetraenoic (adrenic or 22:4) acid in testes of diabetic than in those of control rats. The results indicate that in diabetic rats at least one enzyme responsible for the decreased conversion of 18:2 to 20:4 is the delta 5-desaturase.  相似文献   

10.
Five Lactobacillus strains (2 L. gasseri, 2 L. plantarum and 1 L. reuteri) were cultured in modified MRS medium containing fatty acids (FAs) instead of Tween 80 for 24 h at 37 degrees C, to learn the effect of saturated and unsaturated FAs on the Lactobacillus growth. Free FAs included palmitic (16:0), palmitoleic (c9-16:1), stearic (18:0), oleic (c9-18:1), elaidic (t9-18:1), cis-vaccenic (c11-18:1), vaccenic (t11-18:1), linoleic (c9, c12-18:2), conjugated linoleic (c9, t11- and t10, c12-18:2), alpha-linolenic (c9, c12, c15-18:3), alpha-eleostearic (c9, t11, t13-18:3), eicosapentaenoic (20:5), and docosahexaenoic (22:6) acids. Among free FAs, oleic acid stimulated the growth of all Lactobacillus strains, whereas palmitoleic acid had almost no affect on the Lactobacillus growth. Saturated FAs such as stearic and palmitic acids inhibited or did not affect the Lactobacillus growth. Polyunsaturated FAs such as alpha-linolenic, eicosapentaenoic and docosahexaenoic acids strongly inhibited the Lactobacillus growth at 7.6 x 10(-4) m. Octadecenoic acids such as oleic, elaidic, cis-vaccenic and vaccenic acids remarkably promoted the growth of L. gasseri, regardless of the different double bond positions and configurations. When oleic or cis-vaccenic acid was incubated with L. gasseri, the FAs was transformed to cyclopropane FAs (methyleneoctadecanoic acids) after incorporation into the cells. On the other hand, trans FAs such as elaidic and vaccenic acids incorporated into the cells were not converted to another FAs. Conjugated linoleic and alpha-eleostearic acids having a trans double bond promoted the Lactobacillus growth. The growth of L. gasseri was also stimulated by trans-rich free FAs from hydrogenated canola and fish oils. These results showed that octadecenoic acid and trans FAs had strong promotion activities for the Lactobacillus growth due to their incorporation into membrane lipids.  相似文献   

11.
Sciadonic acid (20:3 Delta-5,11,14) and juniperonic acid (20:4 Delta-5,11,14,17) are polyunsaturated fatty acids (PUFAs) that lack the Delta-8 double bond of arachidonic acid (20:4 Delta-5,8,11,14) and eicosapentaenoic acid (20:5 Delta-5,8,11,14,17), respectively. Here, we demonstrate that these conifer oil-derived PUFAs are metabolized to essential fatty acids in animal cells. When Swiss 3T3 cells were cultured with sciadonic acid, linoleic acid (18:2 Delta-9,12) accumulated in the cells to an extent dependent on the concentration of sciadonic acid. At the same time, a small amount of 16:2 Delta-7,10 appeared in the cellular lipids. Both 16:2 Delta-7,10 and linoleic acid accumulated in sciadonic acid-supplemented CHO cells, but not in peroxisome-deficient CHO cells. We confirmed that 16:2 Delta-7,10 was effectively elongated to linoleic acid in rat liver microsomes. These results indicate that sciadonic acid was partially degraded to 16:2 Delta-7,10 by two cycles of beta-oxidation in peroxisomes, then elongated to linoleic acid in microsomes. Supplementation of Swiss 3T3 cells with juniperonic acid, an n-3 analogue of sciadonic acid, induced accumulation of alpha-linolenic acid (18:3 Delta-9,12,15) in cellular lipids, suggesting that juniperonic acid was metabolized in a similar manner to sciadonic acid. This PUFA remodeling is thought to be a process that converts unsuitable fatty acids into essential fatty acids required by animals.  相似文献   

12.
Extraction, thin-layer chromatography and gas chromatography–mass spectrophotometry analyses revealed the presence of 12, 13, and 12 fatty acids in young, mature, and senescent leaves of Momordica charantia L., representing 87.30, 95.25, and 83.11 % of the total fatty acids, respectively. The proportion of saturated fatty acids was highest in senescent leaves (78.60 %) followed by young leaves (69.42 %) and mature leaves (48.92 %), with the balance accounted for by unsaturated fatty acids. Palmitic acid was the predominant saturated fatty acid in the three types of leaves, whereas alpha-linolenic acid was the predominant unsaturated fatty acid. The fatty acids from young, mature, and senescent leaves followed by the application of a synthetic mixture of fatty acids that was comparable to the natural fatty acids found in the three types of leaves, elicited the attraction of the female insect Epilachna dodecastigma (Coleoptera: Coccinellidae) at 50–200, 50–200, and 100–200 μg/ml concentrations, respectively, in a Y-shaped glass tube olfactometer bioassay. Individual synthetic fatty acids were also evaluated by the olfactometer bioassay at concentrations comparable to the proportions detected in the three types of leaves. Individual synthetic palmitic acid, stearic acid, oleic acid, linoleic acid, and alpha-linolenic acid at 58.24, 13.96, 29.40, 30.31, and 29.76 μg, respectively, attracted the insect. A synthetic blend of 79.13, 10.57, 29.40, 30.31, and 36.33 μg of palmitic, stearic, oleic, linoleic, and alpha-linolenic acids, respectively, which is the proportion present in a 200 μg/ml concentration of fatty acids of mature leaves, or of 116.49, 13.96, and 29.76 μg of palmitic, stearic and alpha-linolenic acids, respectively, which is the proportion present in a 200 μg/ml concentration of natural fatty acids of young leaves, served as attractants for E. dodecastigma.  相似文献   

13.
The composition of fatty acids in human milk lipids was determined in 41 women on the 3rd, 4th, 5th and 6th days after labour by the method of gas chromatography. In these investigations no significant differences were demonstrated in the fatty acids in the lipid fractions between these consecutive days. The level of polyunsaturated fatty acids of the n-6 and n-3 groups was about 11.9-13.6%, including linoleic acid (18:2, n-6) about 7.7-9.8%, and alpha-linolenic acid (18:3, n-3) about 0.7-1%. In the analysis group of n-6 fatty acids the determined acids were: linoleic acid (18:2, n-6), gamma-linolenic acid (18:3, n-6), eicosadienoic acid (20:2, n-6), eicosatrienoic acid (20:3, n-6), arachidonic acid (20:4, n-6), docosahexaenoic acid (22:6, n-6). From the group of n-3 acids the identified ones were: alpha-linolenic acid (18:3, n-3), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). The obtained quotients of fatty acids n-6 through n-3 on the consecutive days were: 7.2:1-7.8:1, indicating a too low level of the n-3 acids in the investigated milk. The acids prevailing in human milk lipids were: oleic (18:1, n-9) and palmitic (16:0) which accounted for 37-39% and 25-26% respectively. The polyunsaturated to saturated fatty acid ratio (P:S) ranged from 0.28 to 0.33.  相似文献   

14.
The acetone extract of Boehmeria nipononivea showed both potent 5alpha-reductase inhibitory activity and hair regrowth promotion effects on mice. 5alpha-Reductase inhibitory activity-guided fractionation led to six active fatty acids: alpha-linolenic, linoleic, palmitic, elaidic, oleic and stearic acids. The extract of B. nipononivea, and alphalinolenic, elaidic and stearic acids exhibited a hair regrowth effect.  相似文献   

15.
Emulsions of the fatty acids linoleic (C18:2 n-6), alpha-linolenic (C18:3 n-3) and arachidonic acid (C20:4 n-6) were incubated for 4 h under anaerobic conditions with human faecal suspensions. Linoleic acid was significantly decreased (P < 0.001) and there was a significant rise (P < 0.05) in its hydrogenation product, stearic acid. Linolenic acid was also significantly decreased (P < 0.01), and significant increases in C18:3 cis-trans isomers (P < 0.01) and linoleic acid (P < 0.05) were seen. With each acid, there were non-significant increases in acids considered to be intermediates in biohydrogenation. The study provides evidence that bacteria from the human colon can hydrogenate C18 essential polyunsaturated fatty acids. However, with arachidonic acid there was no evidence of hydrogenation.  相似文献   

16.
Owing to its distinct chemico-biological properties, chitosan, a cationic biopolymer, offers a great potential in multifarious bioapplications. One such application is as a dietary antilipidemic supplement to be used to reduce obesity/overweight and to lower cholesterol. The lipid-binding efficiency of chitosan, however, remains debatable. Accordingly, in this study we investigated the interactions of chitosan with selected lipids, cholesterol and fatty acids, the latter including saturated (stearic acid) and unsaturated (oleic, linoleic, alpha-linolenic) acids. The experiments were performed with the Langmuir monolayer technique, in which surface pressure-area isotherms were recorded for the lipid monolayers spread on the acetate buffer pH 4.0 subphase in the absence and presence of chitosan. We found that the presence of chitosan in the subphase strongly influenced the shape and location of the isotherms, proving that there existed attractions between chitosan and lipid molecules. The attractions were revealed by changes of the molecular organization of the monolayers. The common feature of these changes was that all the monolayers studied underwent expansion, in each case reaching saturation with increasing chitosan concentration. In agreement with the lipid molecular structures, the highest expansions were observed for the most unsaturated fatty acids, linoleic and alpha-linolenic, the lowest for stearic acid, with oleic acid and cholesterol being the intermediate cases. By contrast, the main distinguishing feature of these changes was that, although none of the monolayers studied changed its state when completely saturated with chitosan, compared to the parent ones the compactness of the monolayers was modified. The solid monolayers of stearic acid and cholesterol were loosened, whereas those of all the unsaturated acids, liquid in nature, were tightened. On the basis of these results we tentatively propose a mechanism of the chitosan action that includes both electrostatic and hydrophobic lipid-chitosan interactions as well as hydrogen bonding between them.  相似文献   

17.
The total lipid and free fatty acid contents of Isotricha intestinalis, Entodinium simplex, and the rumen bacterial flora of the respective protozoa were determined. Warburg manometric data showed that the sodium salts of tributyrin, oleic, and acetic acids stimulated gas production in I. intestinalis, whereas tributyrin was stimulatory with E. simplex and less active with oleic and acetic acids. Rumen bacteria provided fatty acids produced lower manometric gaseous increases when compared with the protozoa. Volatile fatty acids were produced by I. intestinalis and rumen bacteria with tributyrin, but not with tripalmitin. Sodium oleate gave little volatile fatty acid response with I. intestinalis or rumen bacteria. Washed suspensions of I. intestinalis and rumen bacteria concentrated C14-labeled oleic, palmitic, stearic, and linoleic acids within the cells during short incubation periods. Autoradiographs demonstrated the conversion of C14-labeled oleic, palmitic, stearic, linoleic, and acetic acids in the rumen protozoa and bacterial cells.  相似文献   

18.
Diet and postnatal age effect the fatty acid composition of plasma and tissue lipids. This work was designed as a transversal study to evaluate the changes in the fatty acid composition of plasma phospholipids, cholesteryl esters, triglycerides and free fatty acids in preterm infants (28-35 weeks gestational age), fed human milk (HM) and milk formula (MF) from birth to 1 month of life. Sixteen blood samples were obtained from cord, and 19 at 6-8 h after birth, 14 at 1 week and 9 at 4 weeks from HM-fed infants and 18 at 1 week and 14 at 4 weeks from MF-fed ones. Groups had similar mean birth weight, gestational age and sex ratio. The MF provided 69 kcal/dl and contained 16% of linoleic acid and 1.3% of alpha-linolenic acid on the total fat. Plasma lipid fractions were extracted and separated by thin-layer chromatography and fatty acid methyl esters were quantitated by gas liquid chromatography. In plasma phospholipids, linoleic acid (18:2 omega 6) continuously increased from birth to 1 month of age, but no changes were seen as related to type of diet; polyunsaturated fatty acids greater than 18 carbon atoms of both the omega 6 and omega 3 series (PUFA omega 6 greater than 18 C and omega 3 greater than 18 C) dropped from birth to 1 week and continued to decrease in MF-fed infants until 1 month; eicosatrienoic (20:3 omega 6), arachidonic (20:4 omega 6) and docosahexaenoic (22:6 omega 3) were the fatty acids implicated. In cholesteryl esters palmitoleic (16:1 omega 7) and oleic (18:1 omega 9) acids decreased from birth to 1 month and linoleic acid increased and arachidonic acid dropped, especially in MF fed infants. In triglycerides, palmitic, palmitoleic and stearic acid (18:0) decreased during the first month of life; oleic acid remained constant and linoleic acid increased in all infants, but arachidonic acid decreased only in those fed formula. Free fatty acids showed a similar behavior in fatty acids and in plasma triglycerides. Preterm neonates seem to have special requirements of long-chain PUFA and adapted MF should contain these fatty acids in similar amounts to those of HM to allow the maintenance of an adequate tissue structure and physiology.  相似文献   

19.
Linoleic, oleic, and stearic fatty acids, presented vapor-phase retronasally, were discriminable from blanks and each other, but the same concentrations, oral-cavity-only (OCO), were not discriminable from blanks. It remained possible that higher concentrations might be discriminable OCO. To evaluate this, participants attempted to discriminate undiluted linoleic, oleic, or stearic acids, vapor-phase OCO, from blanks. For each fatty acid, participants received 5 stimulus delivery containers (SDCs) in 2 trials; 4 SDC held blanks, the fifth, a fatty acid. As a "positive control" in 2 trials, participants received vapor-phase OCO peppermint extract and blanks. For all trials, the task was to select the 1 different SDC. It was found that the 1 different SDC was selected in 24% of stearic, 32% of linoleic, 47% of oleic acid, and in 92% of peppermint trials; discriminations (the 1 different SDC selected in both trials) occurred in 0%, 16%, 26%, and 84% of pairs, respectively. Correct selections for oleic acid differed from chance, P = 0.0004, but not for linoleic acid, P = 0.125, or stearic acid, P = 0.345, Bonferroni corrected. Vapor-phase oleic acid can be an oral cavity trigeminal stimulus, linoleic acid might be (uncorrected P = 0.0384), but vapor-phase stearic acid cannot be.  相似文献   

20.
Perturbation of the fatty acid composition of human lymphocytes in vitro was investigated by addition of linoleic acid complexed to bovine serum albumin (BSA-LA) and by mitogenic stimulation with phytohaemagglutinin (PHA). BSA-LA resulted in a 45% increase in linoleic acid in phosphatidylethanolamine (PE) and over 100% in phosphatidylcholine (PC) in peripheral blood cells. Supplementation with BSA-LA in PHA-stimulated lymphocytes produced even greater changes: 100% increase in linoleic acid content for PE and over 300% for PC. There was a large decrease in oleic acid: 40% for PE and almost 100% in PC. Significant decreases in arachidonic acid occurred in both phospholipid fractions. PHA alone also altered membrane phospholipid fatty acid composition, with reductions in palmitic, stearic and linoleic acid for PE and increases in oleic acid and arachidonic acid (almost 100%). For PC, there were large decreases in stearic (40%), linoleic (30%) and arachidonic (40%) acids, together with an increase in oleic acid (65%). Cells supplemented with linoleic acid grown in the presence of PHA, compared with those grown in linoleic acid-supplemented medium alone, showed a 40% decrease in palmitic acid and a 55% increase in arachidonic acid in PE. For PC, there were large decreases in stearic acid (40%) and arachidonic acid (57%). Antibody-induced redistribution of surface molecules ('capping') was inhibited by some 14% after incubation with BSA-LA. However, no consistent alterations in PHA-induced cell proliferation were observed. These data suggest that profound alterations of membrane fatty acid composition occur spontaneously during the mitotic cycle, and may be further induced by experimental manipulation, without gross perturbation of cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号