首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled coil domain of gp41 and preventing formation of the final six-helix bundle structure. However, interactions of target MACs with gp41 must be restricted to a subset of trimers that have their hydrophobic fusion peptides inserted into the target membrane. This unique feature of MACs was used to identify the intermediate step of fusion at which gp41 engaged the target membrane. Fusion between HIV envelope-expressing effector cells and target cells was measured by fluorescence microscopy. Expression of MACs in target cells led to less than twofold reduction in the extent of fusion. However, when reaction was first arrested by adding lysolipids that disfavored membrane merger, and the lipids were subsequently removed by washing, control cells supported fusion, whereas those that expressed MACs did not. The drastically improved potency of MACs implies that, at lipid-arrested stage, gp41 bridges the viral and target cell membranes and therefore more optimally binds the membrane-anchored peptides. Experimental demonstration of this intermediate shows that, similar to fusion induced by many other viral glycoproteins, engaging the target membrane by HIV-1 gp41 permits coupling between six-helix bundle formation and membrane merger.  相似文献   

3.
As the limitations of antiretroviral drug therapy, such as toxicity and resistance, become evident, interest in alternative therapeutic approaches for human immunodeficiency virus (HIV) infection is growing. We developed the first gene therapeutic strategy targeting entry of a broad range of HIV type 1 (HIV-1) variants. Infection was inhibited at the level of membrane fusion by retroviral expression of a membrane-anchored peptide derived from the second heptad repeat of the HIV-1 gp41 transmembrane glycoprotein. To achieve maximal expression and antiviral activity, the peptide itself, the scaffold for presentation of the peptide on the cell surface, and the retroviral vector backbone were optimized. This optimized construct effectively inhibited virus replication in cell lines and primary blood lymphocytes. The membrane-anchored C-peptide was also shown to bind to free gp41 N peptides, suggesting that membrane-anchored antiviral C peptides have a mode of action similar to that of free gp41 C peptides. Preclinical toxicity and efficacy studies of this antiviral vector have been completed, and clinical trials are in preparation.  相似文献   

4.
Human immunodeficiency virus (HIV) entry into a host cell requires the fusion of virus and cellular membranes that is driven by interaction of the viral envelope glycoproteins gp120 and gp41 (gp120/gp41) with CD4 and a coreceptor, typically either CXCR4 or CCR5. The stoichiometry of gp120/gp41:CD4:CCR5 necessary to initiate membrane fusion is not known. To allow an examination of early events in gp120/gp41-driven membrane fusion, we developed a novel real-time cell-cell fusion assay. Using this assay to study fusion kinetics, we found that altering the cell surface density of gp120/gp41 affected the maximal extent of fusion without dramatically altering fusion kinetics. Collectively, these observations are consistent with the view that gp120/gp41-driven membrane fusion requires the formation of a threshold number of fusion-active intercellular gp120/gp41:CD4:CCR5 complexes. Furthermore, the probability of reaching this threshold is governed, in part, by the surface density of gp120/gp41.  相似文献   

5.
The human and simian immunodeficiency virus envelope glycoproteins, which mediate virus-induced cell fusion, contain two putative amphipathic helical segments with large helical hydrophobic moments near their carboxyl-terminal ends. In an attempt to elucidate the biological role of these amphipathic helical segments, we have synthesized peptides corresponding to residues 768-788 and 826-854 of HIV-1/WMJ-22 gp160. Circular dichroism studies of the peptides showed that the alpha helicity of the peptides increased with the addition of dimyristoyl phosphatidylcholine (DMPC) indicating that the peptides form lipid-associating amphipathic helixes. The peptides solubilized turbid suspensions of DMPC vesicles, and electron microscopy of peptide-DMPC mixtures revealed the formation of discoidal complexes, suggesting that the peptides bind to and perturb lipid bilayers. The peptides were found to lyse lipid vesicles and caused carboxyfluorescein leakage from dye-entrapped egg phosphatidylcholine liposomes. The peptides also lysed human erythrocytes and were found to be toxic to cell cultures. At subtoxic concentrations, the peptides effectively inhibited the fusion of CD4+ cells infected with recombinant vaccinia virus expressing human immunodeficiency virus (HIV)-1 envelope proteins. Based on these results, and reported studies on the mutational analysis of HIV envelope proteins, we suggest that the amphipathic helical segments near the carboxyl terminus of HIV envelope proteins may play a role in lysis of HIV-infected cells and also may modulate the extent of cell fusion observed during HIV infection of CD4+ cells.  相似文献   

6.
We have investigated membrane interactions and perturbations induced by NH(2)-DKWASLWNWFNITNWLWYIK-COOH (HIV(c)), representing the membrane interface-partitioning region that precedes the transmembrane anchor of the human immunodeficiency virus type-1 gp41 fusion protein. The HIV(c) peptide bound with high affinity to electrically neutral vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and cholesterol (molar ratio, 1:1:1), and induced vesicle leakage and lipid mixing. Infrared spectra suggest that these effects were promoted by membrane-associated peptides adopting an alpha-helical conformation. A sequence representing a defective gp41 phenotype unable to mediate both cell-cell fusion and virus entry, was equally unable to induce vesicle fusion, and adopted a non-helical conformation in the membrane. We conclude that membrane perturbation and adoption of the alpha-helical conformation by this gp41 region might be functionally meaningful.  相似文献   

7.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

8.
HIV entry occurs by concerted conformational changes in the envelope protein complex on the surface of the virus. This complex is made up of a trimer of heterodimers of two subunits: surface subunit, gp120, and transmembrane subunit, gp41. Conformational changes in the envelope complex allow gp41 to mediate membrane fusion leading to exposure of two gp41 regions: N-heptad repeat (NHR) and C-heptad repeat (CHR). Peptides from the NHR or the CHR have been found to inhibit HIV entry. Herein we show that we can covalently inhibit HIV viral entry by permanently trapping the gp41 intermediate on the virus surface using a covalently reactive group on inhibitory peptides. This is evidence showing that vulnerable conformational intermediates exist transiently during HIV viral entry, and the details presented herein will facilitate development of envelope as a target for therapeutics and potential chemopreventive agents that could disable the virus before contact with the host cell.  相似文献   

9.
He Y  Cheng J  Li J  Qi Z  Lu H  Dong M  Jiang S  Dai Q 《Journal of virology》2008,82(13):6349-6358
Human immunodeficiency virus type 1 (HIV-1) entry into the host cell involves a cascade of events and currently represents one of most attractive targets in the search for new antiviral drugs. The fusion-active gp41 core structure is a stable six-helix bundle (6-HB) folded by its trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR). Peptides derived from the CHR region of HIV-1 gp41 are potent fusion inhibitors that target the NHR to block viral and cellular membrane fusion in a dominant negative fashion. However, all CHR peptides reported to date are derived primarily from residues 628 to 673 of gp41; little attention has been paid to the upstream sequence of the pocket binding domain (PBD) in the CHR. Here, we have identified a motif ((621)QIWNNMT(627)) located at the upstream region of the gp41 CHR, immediately adjacent to the PBD ((628)WMEWEREI(635)). Biophysical characterization demonstrated that this motif is critical for the stabilization of the gp41 6-HB core. The peptide CP621-652, containing the (621)QIWNNMT(627) motif, was able to interact with T21, a counterpart peptide derived from the NHR, to form a typical 6-HB structure with a high thermostability (thermal unfolding transition [T(m)] value of 82 degrees C). In contrast, the 6-HB formed by the peptides N36 and C34, which has been considered to be a core structure of the fusion-active gp41, had a T(m) of 64 degrees C. Different from T-20 (brand name Fuseon), which is the first and only HIV-1 fusion inhibitor approved for clinical use, CP621-652 could efficiently block 6-HB formation in a dose-dependent manner. Significantly, CP621-652 had potent inhibitory activity against HIV-1-mediated cell-cell fusion and infection, especially against T-20- and C34-resistant virus. Therefore, our works provide important information for understanding the core structure of the fusion-active gp41 and for designing novel anti-HIV peptides.  相似文献   

10.
Vogel EP  Curtis-Fisk J  Young KM  Weliky DP 《Biochemistry》2011,50(46):10013-10026
Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 residues, including the fusion peptide (FP) that binds to target cell membranes. The Fgp41 sequence was derived from one of the African clade A strains of HIV-1 that have been less studied than European/North American clade B strains. Fgp41 expression at a level of ~100 mg/L of culture was evidenced by an approach that included amino acid type (13)CO and (15)N labeling of recombinant protein and solid-state NMR (SSNMR) spectroscopy of lyophilized whole cells. The approach did not require any protein solubilization or purification and may be a general approach for detection of recombinant protein. The purified Fgp41 yield was ~5 mg/L of culture. SSNMR spectra of membrane-associated Fgp41 showed high helicity for the residues C-terminal of the FP. This was consistent with a "six-helix bundle" (SHB) structure that is the final gp41 state during membrane fusion. This observation and negligible Fgp41-induced vesicle fusion supported a function for SHB gp41 of membrane stabilization and fusion arrest. SSNMR spectra of residues in the membrane-associated FP provided evidence of a mixture of molecular populations with either helical or β-sheet FP conformation. These and earlier SSNMR data strongly support the existence of these populations in the SHB state of membrane-associated gp41.  相似文献   

11.
K A Page  N R Landau    D R Littman 《Journal of virology》1990,64(11):5270-5276
We constructed a recombinant human immunodeficiency virus (HIV) vector to facilitate studies of virus infectivity. A drug resistance gene was inserted into a gp160- HIV proviral genome such that it could be packaged into HIV virions. The HIV genome was rendered replication defective by deletion of sequences encoding gp160 and insertion of a gpt gene with a simian virus 40 promoter at the deletion site. Cotransfection of the envelope-deficient genome with a gp160 expression vector resulted in packaging of the defective HIV-gpt genome into infectious virions. The drug resistance gene was transmitted and expressed upon infection of susceptible cells, enabling their selection in mycophenolic acid. This system provides a quantitative measure of HIV infection, since each successful infection event leads to the growth of a drug-resistant colony. The HIV-gpt virus produced was tropic for CD4+ human cells and was blocked by soluble CD4. In the absence of gp160, noninfectious HIV particles were efficiently produced by cells transfected with the HIV-gpt genome. These particles packaged HIV genomic RNA and migrated to the same density as gp160-containing virions in a sucrose gradient. This demonstrates that HIV virion formation is not dependent on the presence of a viral envelope glycoprotein. Expression of a murine leukemia virus amphotropic envelope gene in cells transfected with HIV-gpt resulted in the production of virus capable of infecting both human and murine cells. These results indicate that HIV can incorporate envelope glycoproteins other than gp160 onto particles and that this can lead to altered host range. Like HIV type 1 and vesicular stomatitis virus(HIV) pseudotypes, gp-160+ HIV-gpt did not infect murine NIH 3T3 cells that bear human CD4, confirming that these cells are blocked at an early stage of HIV infection.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells requires folding of two heptad-repeat regions (N-HR and C-HR) of gp41 into a trimer of N-HR and C-HR hairpins, which brings viral and target cell membranes together to facilitate membrane fusion. Peptides corresponding to the N-HR and C-HR of gp41 are potent inhibitors of HIV infection. Here we report new findings on the mechanism of inhibition of a N-HR peptide and compare these data with inhibition by a C-HR peptide. Using intact envelope glycoprotein (Env) under fusogenic conditions, we show that the N-HR peptide preferentially binds receptor-activated Env and that CD4 binding is sufficient for triggering conformational changes that allow the peptide to bind Env, results similar to those seen with the C-HR peptide. However, activation by both CD4 and chemokine receptors further enhances Env binding by both peptides. We also show that a nonconservative mutation in the N-HR of gp41 abolishes C-HR peptide but not N-HR peptide binding to gp41. These results indicate that there are two distinct sites in receptor-activated Env that are potential targets for drug or vaccine development.  相似文献   

13.
We have identified a region within the ectodomain of the fusogenic human immunodeficiency virus type 1 (HIV-1) gp41, different from the fusion peptide, that interacts strongly with membranes. This conserved sequence, which immediately precedes the transmembrane anchor, is not highly hydrophobic according to the Kyte-Doolittle hydropathy prediction algorithm, yet it shows a high tendency to partition into the membrane interface, as revealed by the Wimley-White interfacial hydrophobicity scale. We have investigated here the membrane effects induced by NH(2)-DKWASLWNWFNITNWLWYIK-CONH(2) (HIV(c)), the membrane interface-partitioning region at the C terminus of the gp41 ectodomain, in comparison to those caused by NH(2)-AVGIGALFLGFLGAAGSTMGARS-CONH(2) (HIV(n)), the fusion peptide at the N terminus of the subunit. Both HIV(c) and HIV(n) were seen to induce membrane fusion and permeabilization, although lower doses of HIV(c) were required for comparable effects to be detected. Experiments in which equimolar mixtures of HIV(c) and HIV(n) were used indicated that both peptides may act in a cooperative way. Peptide-membrane and peptide-peptide interactions underlying those effects were further confirmed by analyzing the changes in fluorescence of peptide Trp residues. Replacement of the first three Trp residues by Ala, known to render a defective gp41 phenotype unable to mediate both cell-cell fusion and virus entry, also abrogated the HIV(c) ability to induce membrane fusion or form complexes with HIV(n) but not its ability to associate with vesicles. Hydropathy analysis indicated that the presence of two membrane-partitioning stretches separated by a collapsible intervening sequence is a common structural motif among other viral envelope proteins. Moreover, sequences with membrane surface-residing residues preceding the transmembrane anchor appeared to be a common feature in viral fusion proteins of several virus families. According to our experimental results, such a feature might be related to their fusogenic function.  相似文献   

14.
BACKGROUND: In vitro fusion of transfected cells expressing the human immunodeficiency virus (HIV) envelope proteins gp120/gp41, with target cells expressing CD4, and a suitable chemokine coreceptor is used widely to investigate the mechanisms of molecular recognition and membrane fusion involved in the entry of the HIV genome into cells and in syncytia formation. METHODS: We developed an assay that uses two different fluorescent lipophilic probes to single label each reacting cell population and flow cytometry to quantify the extent of cellular fusion after coculture. RESULTS: Fused cells are detected as double-fluorescent particles in this assay, therefore permitting measurement of their proportion in the total cell population. The time course and extent of HIV-glycoprotein-related cellular fusion, the optimal cell ratio, the size and cell composition of the fusion products, and the inhibition of fusion caused by soluble CD4 and anti-CXCR4 antibody 12G5 were determined. The assay was applied to measure fusion between gp120/gp41 and CD4-expressing cells growing as monolayers (HeLa/CHO fusion), as well as to suspension lymphocyte cultures (Jurkat/Jurkat fusion). CONCLUSIONS: The method's simple technical and minimal cell-invasive procedures, as well as its non-ambiguous automatic numerical quantification should be useful for the study of factors influencing cell-cell fusion.  相似文献   

15.
Human immunodeficiency virus (HIV) type 1 infection requires functional interactions of the viral surface (gp120) glycoprotein with cell surface CD4 and a chemokine coreceptor (usually CCR5 or CXCR4) and of the viral transmembrane (gp41) glycoprotein with the target cell membrane. Extensive genetic variability, generally in gp120 and the gp41 ectodomain, can result in altered coreceptor use, fusion kinetics, and neutralization sensitivity. Here we describe an R5 HIV variant that, in contrast to its parental virus, infects T-cell lines expressing low levels of cell surface CCR5. This correlated with an ability to infect cells in the absence of CD4, increased sensitivity to a neutralizing antibody recognizing the coreceptor binding site of gp120, and increased resistance to the fusion inhibitor T-20. Surprisingly, these properties were determined by alterations in gp41, including the cytoplasmic tail, a region not previously shown to influence coreceptor use. These data indicate that HIV infection of cells with limiting levels of cell surface CCR5 can be facilitated by gp41 sequences that are not exposed on the envelope ectodomain yet induce allosteric changes in gp120 that facilitate exposure of the CCR5 binding site.  相似文献   

16.
P A Ashorn  E A Berger    B Moss 《Journal of virology》1990,64(5):2149-2156
Human immunodeficiency virus (HIV) infects human cells by binding to surface CD4 molecules and directly fusing with the cell membrane. Although mouse cells expressing human CD4 bind HIV, they do not become infected, apparently because of a block in membrane fusion. To study this problem, we constructed a recombinant vaccinia virus that can infect and promote transient expression of full-length CD4 in mammalian cells. This virus, together with another vaccinia recombinant encoding biologically active HIV envelope glycoprotein gp160, allowed us to study CD4/gp160-mediated cell-cell fusion in a wide variety of human and nonhuman cells in the absence of other HIV proteins. By using syncytium formation assays in which a single cell type expressed both CD4 and gp160, we demonstrated membrane fusion in lymphoid and nonlymphoid human cells but not in any of the 23 tested nonhuman cell types, derived from African green monkey, baboon, rabbit, hamster, rat, or mouse. However, in mixing experiments with one cell type expressing CD4 and the other cell type expressing gp160, all of these nonhuman cells could form CD4/gp160-mediated syncytia when mixed with human cells; in 20 of 23 cases, membrane fusion occurred only if the CD4 molecule was expressed on the human cells whereas in the other three cases, CD4 could be expressed on either one of the fusing partners. Interestingly, in one mouse cell line, CD4-dependent syncytia formed without a human partner, but only if a C-terminally truncated form of the HIV envelope glycoprotein was employed. Our results indicate that nonhuman cells are intrinsically capable of undergoing CD4/gp160-mediated membrane fusion, but this fusion is usually prevented by the lack of helper or the presence of inhibitory factors in the nonhuman cell membranes.  相似文献   

17.
The membrane interface-partitioning region preceding the transmembrane anchor of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope protein is one of the sites responsible for virus binding to its host cell membrane and subsequent fusion events. Here, we used molecular modeling techniques to assess membrane interactions, structure, and hydrophobic properties of the fusion-active peptide representing this region, several of its homologs from different HIV-1 strains, as well as a peptide - defective gp41 phenotype - unable to mediate cell-cell fusion and virus entry. It is shown that the wild-type peptides bind to the water-membrane interface in alpha-helical conformation, while the mutant adopts partly destabilized helix-break-helix structure on the membrane surface. The wild-type peptides reveal specific "tilted oblique-oriented" pattern of hydrophobicity on their surfaces - the property specific for fusion regions of other viruses. Fusion peptides penetrate into the membrane with their N-termini and reveal "fine-tuning" interactions with membrane and water environments: the shift of this balance (e.g., due to point mutations) may dramatically change the mode of membrane binding, and therefore, may cause loss of fusion activity. The modeling results agree well with experimental data and provide a strategy to delineate fusogenic regions in amino acid sequences of viral proteins.  相似文献   

18.
The interaction of 11 overlapping synthetic peptides corresponding to N-terminal segment of HIV transmembrane glycoprotein gp41 (fusion domain) with artificial lipid membranes has been studied. For this purpose the increase of a bilayer lipid membrane (BLM) conductivity and the changes in ESR spectra of spin-labelled liposomes were registrated. Peptide fragment 523-532 gp160 (BRU strain) had the critical length with regard to channel-forming activity on BLM. The degree of such membranotropic action increased simultaneously with the growth of peptide length and the temperature in the cell. Peptides 518-532 and 517-532 lysed TEMPOcholine-containing liposomes at 37 degrees C. The significance of observed effects for explanation of the mechanism of HIV-induced membrane fusion is discussed.  相似文献   

19.
The marked cytopathic effects of human immunodeficiency virus HIV for susceptible cells are caused mainly by fusion between cells expressing viral envelope glycoproteins and cells expressing CD4 molecule. In this study, we tested the ability of different clones of HIV to induce syncytia in CD4-positive cells. We have reported marked difference in syncytium-inducing capacity of 2 clones of human T lymphotropic virus type III (HTLV-IIIB) isolate despite no detectable difference in expression of viral glycoprotein (gp120). This difference in syncytium induction could be explained by the difference detected in their infectivity and binding activities to CD4-positive cells. Meanwhile we reported difference in syncytium-inducing capacity of 2 clones of lymphadenopathy associated virus (LAV1) isolate parallel to the different amounts of gp120 and other viral proteins expressed by these 2 clones. These results suggest that viral factors like infectivity and binding affinity of the virus to the susceptible cells and the amount of viral gp120 expressed by the infected cells may interact in a complex manner affecting fusion activity and syncytium induction in CD4-positive cells.  相似文献   

20.
Entry of an enveloped virus such as Epstein-Barr virus (EBV) into host cells involves fusion of the virion envelope with host cell membranes either at the surface of the cell or within endocytic vesicles. Previous work has indirectly implicated the EBV glycoprotein gp85 in this fusion process. A neutralizing monoclonal antibody to gp85, F-2-1, failed to inhibit binding of EBV to its receptor but interfered with virus fusion as measured with the self-quenching fluorophore octadecyl rhodamine B chloride (R18) (N. Miller and L. M. Hutt-Fletcher, J. Virol. 62:2366-2372, 1988). To test further the hypothesis that gp85 functions as a fusion protein, EBV virion proteins including or depleted of gp85 were incorporated into lipid vesicles to form virosomes. Virosomes were labeled with R18, and those that were made with undepleted protein were shown to behave in a manner similar to that of R18-labeled virus. They bound to receptor-positive but not to receptor-negative cells and fused with Raji cells but not with receptor-positive, fusion-incompetent Molt 4 cells; monoclonal antibodies that inhibited binding or fusion of virus inhibited binding and fusion of virosomes, and virus competed with virosomes for attachment to cells. In contrast, virosomes made from virus proteins depleted of gp85 by immunoaffinity chromatography remained capable of binding to receptor-positive cells but failed to fuse. These results are compatible with the hypothesis that gp85 is actively involved in the fusion of EBV with lymphoblatoid cell lines and suggest that the ability of antibody F-2-1 to neutralize infectivity of EBV represents a direct effect on the function of gp85 as a fusion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号