首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cubically nonlinear multiharmonic theory of two-stream instability in a two-velocity relativistic electron beam is constructed with allowance for parametric resonance between harmonics of longitudinal waves of different types, as well as between wave harmonics of the same type. The effect of these two kinds of parametric resonance interaction on the development of two-stream instability is investigated. It is shown that parametric resonance between different types of longitudinal waves excited in a two-velocity beam can substantially affect the development of physical processes in the system under study. It is proposed to use parametric resonance between longitudinal waves of different types to form waves with a prescribed broad multiharmonic spectrum.  相似文献   

2.
General features of the operation of microwave oscillators based on the Cherenkov resonance interaction of a high-current relativistic electron beam with a preformed plasma are considered. Emphasis is placed on the presence of longitudinal modes of the plasma-beam resonator that make it possible to tune the radiation frequency. Methods by which the radiation frequency can be varied severalfold continuously or in discrete controlled steps and the width of the spectrum of simultaneously generated frequencies can be changed substantially are described. The results of numerical simulations are compared with available experimental data.  相似文献   

3.
Previous experiments revealed the effect of stable acceleration of ions in a plasma-beam discharge in a low magnetic field to energies one order of magnitude higher than the electron thermal energy. To verify the previously proposed mechanisms for this effect, the velocity distribution function of the electrons arriving at the collector and the energy distribution of the ions escaping from the discharge transversely to the axis were measured. It is found that ion acceleration is accompanied by significant electron heating near the discharge axis. The time behavior and longitudinal profile of the intensity of the excited high-frequency oscillations in the frequency range ω ~ ω pe were studied. The accumulation of regular oscillations in the beam-injection region and their stochastization during the propagation along the system axis were observed. The experimental results correlate qualitatively with the data of previous numerical simulations.  相似文献   

4.
We recorded and characterized the echolocation calls emitted by the common vampire bat Desmodus rotundus during foraging in natural habitats in Chile. Signal design typically shows multiple harmonics consisting of a brief quasi-constant frequency (QCF) component at the beginning of the pulse followed by a downward frequency modulated component. Calls are characterized by long durations (5.5 ms) and emitted as single pulses or in groups of 2–3 pulses at a repetition rate of 29 Hz. The higher frequency ranges (85–35 kHz) and the unusual QCF component that characterized multiharmonic signals of free-flying D. rotundus in Chile is a remarkable feature for acoustic identification with other Chilean bats.  相似文献   

5.
Background fluorescence is a major concern in time-resolved microfluorimetry studies of biological samples. A general method for subtraction of an arbitrary background signal in measurements of lifetime and anisotropy decay by multiharmonic Fourier transform spectroscopy is presented. Multifrequency phase and modulation values are measured in parallel by transformation of digitized time-domain waveforms into the frequency domain. For subtraction of background, time-domain waveforms are acquired for emission and reference photomultipliers for sample (e.g., cell containing fluorophore) and blank (e.g., unlabeled cell). Time-domain waveforms obtained in a series of measurements (e.g., sample and blank for parallel and perpendicular orientations of an emission polarizer) are time-justified by least-squares fitting of reference channel waveforms or by phase comparison of the first Fourier harmonics of the reference channel. Background is then subtracted directly in the time domain, and the subtracted waveform is Fourier transformed to the frequency domain for analysis of lifetime or anisotropy decay. This approach yielded excellent background correction over a wide range of background intensities and decay profiles. The method was tested in cuvette fluorimetry with fluorescein and acridine orange and in fluorescence microscopy with living MDCK cells loaded with the pH indicator BCECF. Sample lifetimes and rotational parameters could be recovered accurately with greater than 50% of the signal arising from background. These results establish a direct and practical approach to subtraction of background in complex biological and chemical samples studied by frequency-domain fluorimetry.  相似文献   

6.
A study is made of the polarization of electromagnetic radiation at the second harmonic of the electron gyrofrequency. The radiation is emitted by a highly ionized collisionless plasma in which the turbulence is excited at electron gyrofrequencies in a strong magnetic field. The mechanism for the generation of electromagnetic waves during mergings of the gyrofrequency plasmons is analyzed. It is shown that, even in a strong magnetic field, the degree of circular polarization of electromagnetic radiation at the second harmonic of the electron gyrofrequency may be moderate or weak.  相似文献   

7.
Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.  相似文献   

8.
9.
The effect of modulated electromagnetic fields on the spectral parameters of bioelectric brain activity in awake cats was studied by registering the electroencephalogram from the skin surface in the vertex area using carbon electrodes. In the normal electroencephalogram, spectral components in the range above 20 Hz predominated. It was shown that, upon irradiation with electromagnetic field (basic frequency 980 MHz, power density 30-50 microW/cm2), spectral components in the range of 12-18 Hz begin to prevail. A similarity in the redistribution of the power of spectral components upon both acoustic and modulated electromagnetic influences was revealed. The results suggest that there is a a common neurophysiological mechanism by which modulated electromagnetic radiation and acoustic stimulation affect the electrical activity of the brain. This ia consistent with the assumption that the effect of the electromagnetic field on the central nervous system is mediated through the acoustic sensory system.  相似文献   

10.
11.
A multivariate approach to the treatment of peripheral nerve transection injury has been used in a rat model. A pilot study (48 animals, 8 groups) examined variables associated with the method and timing of surgical repair, the arrest of wallerian degeneration, and the role of pulsing electromagnetic field therapy (PEMF) in functional recovery. A second phase (90 animals, 6 groups) then studied the timing and duration of pulsing electromagnetic field therapy as the only variable in larger groups of animals. The pilot study revealed that a vein-graft conduit did not improve functional recovery compared with standard epineurial repair. Additionally, delayed repair compared favorably with immediate repair. The use of chlorpromazine to inhibit the toxic effects of calcium influx appeared to enhance early functional recovery, and the combination of delayed nerve repair and pulsing electromagnetic field therapy seemed to consistently improve function. The second phase of the study has demonstrated (for the first time) statistical improvement in ambulation in animals treated with delayed surgical repair and prolonged pulsing electromagnetic field therapy. We postulate that future treatment of nerve transection injuries will involve a combined treatment regimen consisting of the immediate arrest of wallerian degeneration, delayed surgery, and pulsing electromagnetic field therapy.  相似文献   

12.
The plainfin midshipman fish, Porichthys notatus, is a vocal species of teleost fish that generates acoustic signals for intraspecific communication during social and reproductive behaviors. All adult morphs (females and males) produce single short duration grunts important for agonistic encounters, but only nesting males produce trains of grunts and growls in agonistic contexts and long duration multiharmonic advertisement calls to attract gravid females for spawning. The midshipman fish uses the saccule as the main acoustic endorgan for hearing to detect and locate vocalizing conspecifics. Here, I examined the response properties of evoked potentials from the midshipman saccule to determine the frequency response and auditory threshold sensitivity of saccular hair cells to behaviorally-relevant single tone stimuli. Saccular potentials were recorded from the rostral, medial and caudal regions of the saccule while sound was presented by an underwater speaker. Saccular potentials of the midshipman, like other teleosts, were evoked greatest at a frequency that was twice the stimulus frequency. Results indicate that midshipman saccular hair cells of non-reproductive adults had a peak frequency sensitivity that ranged from 75 (lowest frequency tested) to 145 Hz and were best suited to detect the low frequency components (≤105 Hz) of midshipman vocalizations.  相似文献   

13.
Pulsed electromagnetic fields promote healing of delayed united and ununited fractures by triggering a series of events in fibrocartilage. We examined the effects of a pulsed electromagnetic field (recurrent bursts, 15.4 Hz, of shorter pulses of an average of 2 gauss) on rabbit costal chondrocytes in culture. A pulsed electromagnetic field slightly reduced the intracellular cyclic adenosine 3',5'-monophosphate (cAMP) level in the culture. However, it significantly enhanced cAMP accumulation in response to parathyroid hormone (PTH) to 140% of that induced by PTH in its absence, while it did not affect cAMP accumulation in response to prostaglandin E1 or prostaglandin I2. The effect on cAMP accumulation in response to PTH became evident after exposure of the cultures to the pulsed electromagnetic field for 48 h, and was dependent upon the field strength. cAMP accumulation in response to PTH is followed by induction of ornithine decarboxylase, a good marker of differentiated chondrocytes, after PTH treatment for 4 h. Consistent with the enhanced cAMP accumulation, ornithine decarboxylase activity induced by PTH was also increased by the pulsed electromagnetic field to 170% of that in cells not exposed to a pulsed electromagnetic field. Furthermore, stimulation of glycosaminoglycan synthesis, a differentiated phenotype, in response to PTH was significantly enhanced by a pulsed electromagnetic field. Thus, a pulsed electromagnetic field enhanced a series of events in rabbit costal chondrocytes in response to PTH. These findings show that exposure of chondrocytes to a pulsed electromagnetic field resulted in functional differentiation of the cells.  相似文献   

14.
Solitons, as self-reinforcing solitary waves, interact with complex biological phenomena such as cellular self-organization. A soliton model is able to describe a spectrum of electromagnetism modalities that can be applied to understand the physical principles of biological effects in living cells, as caused by endogenous and exogenous electromagnetic fields and is compatible with quantum coherence. A bio-soliton model is proposed, that enables to predict which eigen-frequencies of non-thermal electromagnetic waves are life-sustaining and which are, in contrast, detrimental for living cells. The particular effects are exerted by a range of electromagnetic wave eigen-frequencies of one-tenth of a Hertz till Peta Hertz that show a pattern of 12 bands, and can be positioned on an acoustic reference frequency scale. The model was substantiated by a meta-analysis of 240 published articles of biological electromagnetic experiments, in which a spectrum of non-thermal electromagnetic waves were exposed to living cells and intact organisms. These data support the concept of coherent quantized electromagnetic states in living organisms and the theories of Fröhlich, Davydov and Pang. It is envisioned that a rational control of shape by soliton-waves and related to a morphogenetic field and parametric resonance provides positional information and cues to regulate organism-wide systems properties like anatomy, control of reproduction and repair.  相似文献   

15.
A study is made of the main regimes of interaction of relativistically strong electromagnetic waves with plasma under conditions in which the radiation from particles plays a dominant role. The discussion is focused on such issues as the generation of short electromagnetic pulses in the interaction of laser light with clusters and highly efficient ion acceleration in a thin plasma slab under the action of the ponderomotive pressure of the wave. An approach is developed for generating superintense electromagnetic pulses by means of up-to-date laser devices.  相似文献   

16.
Electronic systems are vulnerable in electromagnetic interference environment. Although many solutions are adopted to solve this problem, for example shielding, filtering and grounding, noise is still introduced into the circuit inevitably. What impresses us is the biological nervous system with a vital property of robustness in noisy environment. Some mechanisms, such as neuron population coding, degeneracy and parallel distributed processing, are believed to partly explain how the nervous system counters the noise and component failure. This paper proposes a novel concept of bio-inspired electromagnetic protec- tion making reference to the characteristic of neural information processing. A bionic model is presented here to mimic neuron populations to transform the input signal into neural pulse signal. In the proposed model, neuron provides a dynamic feedback to the adjacent one according to the concept of synaptic plasticity. A simple neural circuitry is designed to verify the rationality of the bio-inspired model for electromagnetic protection. The experiment results display that bio-inspired electromagnetic pro- tection model has more power to counter the interference and component failure.  相似文献   

17.
A set of wave equations is derived that describes electromagnetic waves at frequencies on the order of the ion gyrofrequency in a plasma column with an arbitrary electron temperature. This set takes into account, in particular, the resonant interaction of electrons with waves in the transit-time magnetic pumping regime. The effect of the amplification of the electromagnetic fields of current-carrying antennas by the plasma is analyzed. The evolution of the fields with an increase of plasma density from a zero value (vacuum) is considered. The main parameters are determined for minority ion cyclotron resonance heating in the planned EPSILON system.  相似文献   

18.
Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08 %, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.  相似文献   

19.
Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged with the media to counteract this effect.  相似文献   

20.
Light-induced toxicity is a fundamental bottleneck in microscopic imaging of live embryos. In this article, after a review of photodamage mechanisms in cells and tissues, we assess photo-perturbation under illumination conditions relevant for point-scanning multiphoton imaging of live Drosophila embryos. We use third-harmonic generation (THG) imaging of developmental processes in embryos excited by pulsed near-infrared light in the 1.0–1.2 µm range. We study the influence of imaging rate, wavelength, and pulse duration on the short-term and long-term perturbation of development and define criteria for safe imaging. We show that under illumination conditions typical for multiphoton imaging, photodamage in this system arises through 2- and/or 3-photon absorption processes and in a cumulative manner. Based on this analysis, we derive general guidelines for improving the signal-to-damage ratio in two-photon (2PEF/SHG) or THG imaging by adjusting the pulse duration and/or the imaging rate. Finally, we report label-free time-lapse 3D THG imaging of gastrulating Drosophila embryos with sampling appropriate for the visualisation of morphogenetic movements in wild-type and mutant embryos, and long-term multiharmonic (THG-SHG) imaging of development until hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号