首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Recombinant Zantedeschia aethiopica agglutinin (ZAA) was expressed in Escherichia coli as N-terminal His-tagged fusion. After induction with isopropylthio-β-d-galactoside (IPTG), the recombinant ZAA was purified by metal-affinity chromatography. The purified ZAA protein was applied in anti-fungal assay and the result showed that recombinant ZAA had anti-fungal activity towards leaf mold (Fulvia fulva), one of the most serious phytopathogenic fungi causing significant yield loss of crops. This study suggests that ZAA could be an effective candidate in genetic engineering of plants for the control of leaf mold.  相似文献   

2.
In Escherichia coli cellular levels of pppGpp and ppGpp, collectively called (p)ppGpp, are maintained by the products of two genes, relA and spoT. Like E. coli, Vibrio cholerae also possesses relA and spoT genes. Here we show that similar to E. coli, V. cholerae ΔrelA cells can accumulate (p)ppGpp upon carbon starvation but not under amino acid starved condition. Although like in E. coli, the spoT gene function was found to be essential in V. cholerae relA + background, but unlike E. coli, several V. cholerae ΔrelA ΔspoT mutants constructed in this study accumulated (p)ppGpp under glucose starvation. The results suggest a cryptic source of (p)ppGpp synthesis in V. cholerae, which is induced upon glucose starvation. Again, unlike E. coli ΔrelA ΔspoT mutant (ppGpp0 strain), the V. cholerae ΔrelA ΔspoT mutants showed certain unusual phenotypes, which are (a) resistance towards 3-amino-1,2,4-triazole (AT); (b) growth in nutrient poor M9 minimal medium; (c) ability to stringently regulate cellular rRNA accumulation under glucose starvation and (d) initial growth defect in nutrient rich medium. Since these phenotypes of ΔrelA ΔspoT mutants could be reverted back to ΔrelA phenotypes by providing SpoT in trans, it appears that the spoT gene function is crucial in V. cholerae. Part of this work was presented at the International Symposium on Chemical Biology, Kolkata, India, 7–9 March 2007.  相似文献   

3.
We studied heterologous expression of xylanase 11A gene of Chaetomium thermophilum in Pichia pastoris and characterized the thermostable nature of the purified gene product. For this purpose, the xylanase 11A gene of C. thermophilum was cloned in P. pastoris GS115 under the control of AOX1 promoter. The maximum extracellular activity of recombinant xylanase (xyn698: gene with intron) was 15.6 U ml−1 while that of recombinant without intron (xyn669) was 1.26 U ml−1 after 96 h growth. The gene product was purified apparently to homogeneity level. The optimum temperature of pure recombinant xylanase activity was 70°C and the enzyme retained its 40.57% activity after incubation at 80°C for 10 min. It exhibited quite lower demand of activation energy, enthalpy, Gibbs free energy, entropy, and xylan binding energy during substrate hydrolysis than that required by that of the donor, thus indicating its thermostable nature. pH-dependent catalysis showed that it was quite stable in a pH range of 5.5–8.5. This revealed that gene was successfully processed in Ppastoris and remained heat stable and may qualify for its potential use in paper and pulp and animal feed applications.  相似文献   

4.
A gene encoding endochitinase from Trichoderma virens UKM-1 was cloned and expressed in E. coli BL21 (DE3). Both the endochitinase gene and its cDNA sequences were obtained. The endochitinase gene encodes 430 amino acids from an open reading frame comprising of 1,690 bp nucleotide sequence with three introns. The endochitinase was expressed as soluble and active enzyme at 20°C when induced with 1 mM IPTG. Maximum activity was observed at 4 h of post-induction time. SDS-PAGE showed that the purified endochitinase exhibited a single band with molecular weight of 42 kDa. Biochemical characterization of the enzyme displayed a near neutral pH characteristic with an optimum pH at 6.0 and optimum temperature at 50°C. The enzyme is stable between pH 3.0–7.0 and is able to retain its activity from 30 to 60°C. The presence of Mg2+ and Ca2+ ions increased the enzyme activity up to 20%. The purified enzyme has a strong affinity towards colloidal chitin and low effect on ethyl cellulose and D-cellubiose which are non-chitin related substrates. HPLC analysis from the chitin hydrolysis showed the release of (GlcNAc)3, (GlcNAc)2 and GlcNAc, in which (GlcNAc)2 was the main product.  相似文献   

5.
6.
We undertook a field study to determine whether comb cell size affects the reproductive behavior of Varroa destructor under natural conditions. We examined the effect of brood cell width on the reproductive behavior of V. destructor in honey bee colonies, under natural conditions. Drone and worker brood combs were sampled from 11 colonies of Apis mellifera. A Pearson correlation test and a Tukey test were used to determine whether mite reproduction rate varied with brood cell width. Generalized additive model analysis showed that infestation rate increased positively and linearly with the width of worker and drone cells. The reproduction rate for viable mother mites was 0.96 viable female descendants per original invading female. No significant correlation was observed between brood cell width and number of offspring of V. destructor. Infertile mother mites were more frequent in narrower brood cells.  相似文献   

7.
The lipase Lip2 of the edible basidiomycete, Pleurotus sapidus, is an extracellular enzyme capable of hydrolysing xanthophyll esters with high efficiency. The gene encoding Lip2 was expressed in Escherichia coli TOP10 using the gene III signal sequence to accumulate proteins in the periplasmatic space. The heterologous expression under control of the araBAD promoter led to the high level production of recombinant protein, mainly as inclusion bodies, but partially in a soluble and active form. A fusion with a C-terminal His tag was used for purification and immunochemical detection of the target protein. This is the first example of a heterologous expression and periplasmatic accumulation of a catalytically active lipase from a basidiomycete fungus.  相似文献   

8.
There are three most important bacterial causative agents of serious infections that could be misused for warfare purposes: Bacillus anthracis (the causative agent of anthrax) is the most frequently mentioned one; however, Fracisella tularensis (causing tularemia) and Yersinia pestis (the causative agent of plague) are further bacterial agents enlisted by Centers for Disease Control and Prevention into the category A of potential biological weapons. This review intends to summarize basic information about these bacterial agents. Military aspects of their pathogenesis and the detection techniques suitable for field use are discussed.  相似文献   

9.
Huang B  Guo J  Yi B  Yu X  Sun L  Chen W 《Biotechnology letters》2008,30(7):1121-1137
Heterologous expression of genes involved in the biosynthesis of various products is of increasing interest in biotechnology and in drug research and development. Microbial cells are most appropriate for this purpose. Availability of more microbial genomic sequences in recent years has greatly facilitated the elucidation of metabolic and regulatory networks and helped gain overproduction of desired metabolites or create novel production of commercially important compounds. Saccharomyces cerevisiae, as one of the most intensely studied eukaryotic model organisms with a rich density of knowledge detailing its genetics, biochemistry, physiology, and large-scale fermentation performance, can be capitalized upon to enable a substantial increase in the industrial application of this yeast. In this review, we describe recent efforts made to produce commercial secondary metabolites in Saccharomyces cerevisiae as pharmaceuticals. As natural products are increasingly becoming the center of attention of the pharmaceutical and nutraceutical industries, such as naringenin, coumarate, artemisinin, taxol, amorphadiene and vitamin C, the use of S. cerevisiae for their production is only expected to expand in the future, further allowing the biosynthesis of novel molecular structures with unique properties.  相似文献   

10.
Root segments from seedlings of Panax ginseng produced adventitious roots directly when cultured on 1/2 MS solid medium lacking NH4NO3 and containing 3.0 mg l−1 IBA. Using this adventitious root formation, we developed rapid and efficient transgenic root formation directly from adventitious root segments in P. ginseng. Root segments were co-cultivated with Agrobacterium tumefaciens (GV3101) caring β-glucuronidase (GUS) gene. Putative transgenic adventitious roots were formed directly from root segments on medium with 400 mg l−1 cefotaxime and 50 mg l−1 kanamycin. Kanamycin resistant adventitious roots were selected and proliferated as individual lines by subculturing on medium with 300 mg l−1 cefotaxime and 50 mg l−1 kanamycin at two weeks subculture interval. Frequency of transient and stable expression of GUS gene was enhanced by acetosyringon (50 mg l−1) treatment. Integration of transgene into the plants was confirmed by the X-gluc reaction, PCR and Southern analysis. Production of transgenic plants was achieved via somatic embryogenesis from the embryogenic callus derived from independent lines of adventitious roots. The protocol for rapid induction of transgenic adventitious roots directly from adventitious roots can be applied for a new Agrobacterium tumefaciens-mediated genetic transformation protocol in P. ginseng.  相似文献   

11.
A set of filamentous fungi (42 strains) was screened for alpha-N-acetylgalactosaminidase activity, and a series of inducers and different cultivation conditions were tested. Enzyme production by the best producer Aspergillus niger CCIM K2 was optimized and scaled up. alpha-N-Acetylgalactosaminidase was purified to apparent homogeneity by cation exchange chromatography, gel filtration, and chromatofocusing, and basic biochemical data of the enzyme were determined: The native molecular weight was estimated by gel filtration to be approximately 440 kDa, the molecular weight of the subunit was determined to be 76 kDa and the pI = 4.8. The K (M) was 0.73 mmol/l for o-nitrophenyl 2-acetamido-2-deoxy-alpha-D-galactopyranoside (o-NP-alpha-GalNAc), and optimum enzyme activity was achieved at pH 1.8 and 55 degrees C. This alpha-N-acetylgalactosaminidase is a retaining-type glycosidase, and it was N-deglycosylated without any loss of activity.  相似文献   

12.
13.
European pear exhibits RNase-based gametophytic self-incompatibility controlled by the polymorphic S-locus. S-allele diversity of cultivars has been extensively investigated; however, no mutant alleles conferring self-compatibility have been reported. In this study, two European pear cultivars, ‘Abugo’ and ‘Ceremeño’, were classified as self-compatible after fruit/seed setting and pollen tube growth examination. S-genotyping through S-PCR and sequencing identified a new S-RNase allele in the two cultivars, with identical deduced amino acid sequence as S 21 , but differing at the nucleotide level. Test-pollinations and analysis of descendants suggested that the new allele is a self-compatible pistil-mutated variant of S 21 , so it was named S 21 °. S-genotypes assigned to ‘Abugo’ and ‘Ceremeño’ were S 10 S 21 ° and S 21 °S 25 respectively, of which S 25 is a new functional S-allele of European pear. Reciprocal crosses between cultivars bearing S 21 and S 21 ° indicated that both alleles exhibit the same pollen function; however, cultivars bearing S 21 ° had impaired pistil-S function as they failed to reject either S 21 or S 21 ° pollen. RT-PCR analysis showed absence of S 21 °-RNase gene expression in styles of ‘Abugo’ and ‘Ceremeño’, suggesting a possible origin for S 21 ° pistil dysfunction. Two polymorphisms found within the S-RNase genomic region (a retrotransposon insertion within the intron of S 21 ° and indels at the 3′UTR) might explain the different pattern of expression between S 21 and S 21 °. Evaluation of cultivars with unknown S-genotype identified another cultivar ‘Azucar Verde’ bearing S 21 °, and pollen tube growth examination confirmed self-compatibility for this cultivar as well. This is the first report of a mutated S-allele conferring self-compatibility in European pear.  相似文献   

14.
Dana Bernátová 《Biologia》2008,63(2):175-176
The paper brings information on an isolated occurrence and morphological characters of Carex × involuta and C. juncella populations in the Vel’ká Fatra Mts. Their presence has been known neither from the territory of Slovakia nor from the whole Western Carpathians till now.  相似文献   

15.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

16.
Erwinia carotovora subspecies betavasculorum, also known as E. betavasculorum and Pectobacterium betavasculorum, is a soil bacterium that has the capacity to cause root rot necrosis of sugarbeets. The qualitatively different pathogenicity exhibited by the virulent E. carotovora strain and two avirulent strains, a Citrobacter sp. and an Enterobacter cloacae, was examined using digital analysis of photographic evidence of necrosis as well as for carbohydrate, ethane, and ethylene release compared with uninoculated potato tuber slices. Visual scoring of necrosis was superior to digital analysis of photographs. The release of carbohydrates and ethane from potato tuber slices inoculated with the soft rot necrosis-causing Erwinia was significantly greater than that of potato tuber slices that had not been inoculated or that had been inoculated with the nonpathogenic E. cloacae and Citrobacter sp. strains. Interestingly, ethylene production from potato slices left uninoculated or inoculated with the nonpathogenic Citrobacter strain was 5- to 10-fold higher than with potato slices inoculated with the pathogenic Erwinia strain. These findings suggest that (1) carbohydrate release might be a useful measure of the degree of pathogenesis, or relative virulence; and that (2) bacterial suppression of ethylene formation may be a critical step in root rot disease formation.  相似文献   

17.
Efficient transformation of leaf disc-derived callus of Codonopsis lanceolata was obtained using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector, pYBI121, that carries the neomycin phosphotransferase (npt II) gene as a selectable marker. The green shoots recovered from agroinfected explants on selection medium (containing 0.1 mg/l α-naphthaleneacetic acid (NAA), 1 mg/l 6-benzylaminopurine (BAP), 100 mg/l kanamycin, and 250 mg/l cefotaxime) were rooted on Murashige and Skoog (MS) medium supplemented with 2 mg/l IBA and 10 mg/l kanamycin. To optimize the transformation conditions, several factors were assessed, including the co-cultivation period, the duration of pre- and post-culture in darkness and light, the kanamycin concentration, and the Agrobacterium densities. We produced transgenic Codonopsis lanceolata overexpressing γ-tocopherol methyltransferase (γ-TMT) by this protocol. Moreover, the α-tocopherol content of the plants was enhanced by the overexpression of this gene. Bimal Kumar Ghimire and Eun Soo Seong contributed equally to this work.  相似文献   

18.
Verbena (Verbena x hybrida), an important floricultural species, was successfully regenerated from stem segments on Murashige and Skoog's basal medium supplemented with thidiazuron and indole-3-acetic acid. A transformation system was developed using cvs. Temari Scarlet, Temari Sakura, Tapien Rose and TP-P2. Agrobacterium tumefaciens strain Agl0 harboring the sGFP gene was infected into stem segments. Transformation efficiency was improved by evaluating and manipulating the age of the plant material, the concentration of kanamycin in the medium during selection, and the length of the culture period in the dark. After 2-3 months of culture on the selection medium, GFP-positive shoots were obtained in all four of the cultivars tested. These shoots were successfully acclimated and set flowers within 2-3 months in a greenhouse. GFP was expressed in all of the organs including the floral parts. Stable genomic transformation was confirmed by Southern blot analysis. No morphological differences were observed between the transformed plants and their host plants.  相似文献   

19.
Jiayun Qiao  Yunhe Cao 《Biologia》2012,67(4):649-653
Two chimeric genes, XynA-Bs-Glu-1 and XynA-Bs-Glu-2, encoding Aspergillus sulphureus β-xylanase (XynA, 26 kDa) and Bacillus subtilis β-1,3-1,4-glucanase (Bs-Glu, 30 kDa), were constructed via in-fusion by different linkers and expressed successfully in Pichia pastoris. The fusion protein (50 kDa) exhibited both β-xylanase and β-1,3-1,4-glucanase activities. Compared with parental enzymes, the moiety activities were decreased in fermentation supernatants. Parental XynA and Bs-Glu were superior to corresponding moieties in each fusion enzymes because of lower Kn higher kcat. Despite some variations, common optima were generally 50°C and pH 3.4 for the XynA moiety and parent, and 40°C and pH 6.4 for the Bs-Glu counterparts. Thus, the fusion enzyme XynA-Bs-Glu-1 and XynA-Bs-Glu-2 were bifunctional.  相似文献   

20.
Neotermes koshunensis is a lower termite that secretes endogenous β-glucosidase in the salivary glands. This β-glucosidase (G1NkBG) was successfully expressed in Aspergillus oryzae. G1NkBG was purified to homogeneity from the culture supernatant through ammonium sulfate precipitation and anion exchange, hydrophobic, and gel filtration chromatographies with a 48-fold increase in purity. The molecular mass of the native enzyme appeared as a single band at 60 kDa after gel filtration analysis, indicating that G1NkBG is a monomeric protein. Maximum activity was observed at 50 °C with an optimum pH at 5.0. G1NkBG retained 80% of its maximum activity at temperatures up to 45 °C and lost its activity at temperatures above 55 °C. The enzyme was stable from pH 5.0 to 9.0. G1NkBG was most active towards laminaribiose and p-nitrophenyl-β-d-fucopyranoside. Cellobiose, as well as cello-oligosaccharides, was also well hydrolyzed. The enzyme activity was slightly stimulated by Mn2+ and glycerol. The K m and V max values were 0.77 mM and 16 U/mg, respectively, against p-nitrophenyl-β-d-glucopyranoside. An unusual finding was that G1NkBG was stimulated by 1.3-fold when glucose was present in the reaction mixture at a concentration of 200 mM. These characteristics, particularly the stimulation of enzyme activity by glucose, make G1NkBG of great interest for biotechnological applications, especially for bioethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号