首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— ATP-induced changes in the intracellular Ca2+concentration ([Ca2+]i) in neuroblastoma glioma hybrid NG108–15 cells were studied. Using the fluorescent Ca2+indicator fura-2, we have shown that the [Ca2+]i increased in response to ATP. ATP at 3 mM caused the greatest increase in [Caz+]i, whereas at higher concentrations of ATP the response became smaller. Two nonhydrolyzable ATP analogues, adenosine 5′-thiotriphosphate and 5′-adenylyl-β, γ-imidodiphosphate, could not trigger significant [Ca2+]i change, but they could block the ATP effect. Other adenine nucleotides, including ADP, AMP, α,β-methylene-ATP, β,γ-methylene-ATP, and 2-methylthio-ATP, as well as UTP and adenosine, all had no effect on [Ca2+]i at 3 mM. In the absence of extracellular Ca2+, the effect of ATP was inhibited totally, but could be restored by the addition of Ca2+ to the cells. Upon removal of Mg2+, the maximum increase in [Ca2+]i induced by ATP was enhanced by about 42%. Ca2+-channel blockers partially inhibited the ATP-induced [Ca2+]i rise. The ATP-induced [Ca2+]i rise was not affected by thapsigargin pretreatment, though such pretreatment blocked bradykinin-induced [Ca2+]i rise completely. No heterologous desensitization of [Ca2+]i rise was observed between ATP and bradykinin. The magnitude of the [Ca2+]i rise induced by ATP increased between 1.5 and 3.1 times when external Na+was replaced with Tris, N-methyl-d -glucamine, choline, or Li+. The addition of EGTA or verapamil to cells after their maximum response to ATP immediately lowered the [Ca2+]i to the basal level in Na+-containing or Na+-free Tris solution. Our results suggest that ATP stimulates Ca2+influx via at least two pathways: ion channels that are permeable to Ca2+ and Na+, and pores formed by ATP4-.  相似文献   

2.
Adenosine 5′-triphosphate (ATP) is an extracellular signal that regulates various cellular functions. Cellular secretory activities are enhanced by ATP as well as by cholinergic and adrenergic stimuli. The present study aimed to determine which purinoceptors play a role in ATP-induced changes in the intracellular concentration of calcium ions ([Ca2+]i) and in the fine structure of acinar cells of rat lacrimal glands. ATP induced exocytotic structures, vacuolation and an increase in [Ca2+]i in acinar cells. The removal of extracellular Ca2+ or the use of Ca2+ channel blockers partially inhibited the ATP-induced [Ca2+]i increase. U73122 (an antagonist of PLC) and heparin (an antagonist of IP3 receptors) did not completely inhibit the ATP-induced [Ca2+]i increase. P1 purinoceptor agonists did not induce any changes in [Ca2+]i, whereas suramin (an antagonist of P2 receptors) completely inhibited ATP-induced changes in [Ca2+]i. A P2Y receptor agonist, 2-MeSATP, induced a strong increase in [Ca2+]i, although UTP (a P2Y2,4,6 receptor agonist) had no effect, and reactive blue 2 (a P2Y receptor antagonist) resulted in partial inhibition. The potency order of ATP analogs (2-MeSATP > ATP ⋙ UTP) suggested that P2Y1 played a significant role in the cellular response to ATP. BzATP (a P2X7 receptor agonist) induced a small increase in [Ca2+]i, but α,β-meATP (a P2X1,3 receptor agonist) had no effect. RT-PCR indicated that P2X2,3,4,5,6,7 and P2Y1,2,4,12,14 are expressed in acinar cells. In conclusion, the response of acinar cells to ATP is mediated by P2Y (especially P2Y1) as well as by P2X purinoceptors.  相似文献   

3.
In the cochlea, cell damage triggers intercellular Ca2+ waves that propagate through the glial-like supporting cells that surround receptor hair cells. These Ca2+ waves are thought to convey information about sensory hair cell-damage to the surrounding supporting cells within the cochlear epithelium. Mitochondria are key regulators of cytoplasmic Ca2+ concentration ([Ca2+]cyt), and yet little is known about their role during the propagation of such intercellular Ca2+ signalling. Using neonatal rat cochlear explants and fluorescence imaging techniques, we explore how mitochondria modulate supporting cell [Ca2+]cyt signals that are triggered by ATP or by hair cell damage. ATP application (0.1–50 μM) caused a dose dependent increase in [Ca2+]cyt which was accompanied by an increase in mitochondrial calcium. Blocking mitochondrial Ca2+ uptake by dissipating the mitochondrial membrane potential using CCCP and oligomycin or using Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, enhanced the peak amplitude and duration of ATP-induced [Ca2+]cyt transients. In the presence of Ru360, the mean propagation velocity, amplitude and extent of spread of damage-induced intercellular Ca2+ waves was significantly increased. Thus, mitochondria function as spatial Ca2+ buffers during agonist-evoked [Ca2+]cyt signalling in cochlear supporting cells and play a significant role in regulating the spatio-temporal properties of intercellular Ca2+ waves.  相似文献   

4.
Extracellular ATP caused a dose-dependent accumulation of inositol phosphates and a rise in cytosolic free Ca2+ ([Ca2+]i) in C6 glioma cells with an EC50 of 60±4 and 10±5 M, respectively. The threshold concentration of ATP (3 M) for increasing [Ca2+]i was approximately 10-fold less than that for stimulating phosphoinositide (PI) turnover. The PI response showed a preference for ATP; ADP was about 3-fold less potent than ATP but had a comparable maximal stimulation (11-fold of the control). AMP and adenosine were without effect at concentrations up to 1 mM. ATP-stimulated PI metabolism was found to be partially dependent on extracellular Ca2+ and Na+ but was resistant to tetrodotoxin, saxitoxin, amiloride, ouabain, and inorganic blockers of Ca2+ channels (Co2+, Mn2+, La3+, or Cd2+). In Ca2+-free medium, ATP caused only a transient increase in [Ca2+]i as opposed to a sustained [Ca2+]i increase in normal medium. The ATP-induced elevation of [Ca2+]i was resistant to Na+ depletion and treatment with saxitoxin, verapamil and nisoldipine, but was attentuated by La3+. The differences in the characteristics of ATP-caused P1 hydrolysis and [Ca2+]i rise suggest that ATP receptors are independently coupled to phospholipase C and receptor-gated Ca2+ channels. Because of the robust effect of ATP in stimulating PI turnover and the apparent absence of P1-purinergic receptors, the C6 glioma cell line provides a useful model for investigating the transmembrane signalling pathway induced by extracellular ATP. The mechanisms underlying the unexpected finding of [Na+]o dependency for ATP-induced PI turnover require further investigation.Abbreviations PI phosphoinositide - [Ca2+]i cytosolic free Ca2+ concentration - PDBu phorbol 12, 13-dibutyrate - PSS physiological saline solution - IP inositol phosphates - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - IP4 inositol (1,3,4,5) tetrakisphosphate - PLC phospholipase C  相似文献   

5.
Reetz  G.  Wiesinger  H.  Reiser  G. 《Neurochemical research》1997,22(5):621-628
Oscillations of cytosolic Ca2+ activity ([Ca2+]i) induced by stimulation with ATP in rat astrocytes in primary cultures were analysed. Astrocytes, prepared from the brains of newborn rats, loaded with the fluorescent Ca2+ indicator fura-2/AM, were continuously stimulated with ATP (10 M). ATP caused a large initial [Ca2+ peak, followed by regular [Ca2+]i oscillations (frequencies 1–5/min). Astrocytes were identified by glial fibrillary acidic protein staining of cells after [Ca2+]i recording. The oscillations were reversibly blocked by the P2 purinoceptor antagonist suramin (30 M). Influx of extracellular Ca2+ and mobilization of Ca2+ from intracellular stores both contributed to the oscillations. The effects of hypertonic and hypotonic superfusion medium on ATP-induced [Ca2+]i oscillations were examined. Hypertonic medium (430 mOsm) reversibly suppressed the ATP-induced oscillations. Hypotonic medium (250 mOsm), in spite of having heterogeneous effects, most frequently induced a rise in [Ca2+]i, or reversibly increased the frequency of the oscillations. Thus, a change in cell volume might be closely connected with [Ca2+]i oscillations in astrocytes indicating that [Ca2+]i oscillations in glial cells play an important role in regulatory volume regulation in the brain.  相似文献   

6.
Purinergic signaling in the mammalian cochleovestibular hair cells and afferent neurons is reviewed. The scope includes P2 and P1 receptors in the inner hair cells (IHCs) of the cochlea, the type I spiral ganglion neurons (SGNs) that convey auditory signals from IHCs, the vestibular hair cells (VHCs) in the vestibular end organs (macula in the otolith organs and crista in the semicircular canals), and the vestibular ganglion neurons (VGNs) that transmit postural and rotatory information from VHCs. Various subtypes of P2X ionotropic receptors are expressed in IHCs as well as P2Y metabotropic receptors that mobilize intracellular calcium. Their functional roles still remain speculative, but adenosine 5′-triphosphate (ATP) could regulate the spontaneous activity of the hair cells during development and the receptor potentials of mature hair cells during sound stimulation. In SGNs, P2Y metabotropic receptors activate a nonspecific cation conductance that is permeable to large cations as NMDG+ and TEA+. Remarkably, this depolarizing nonspecific conductance in SGNs can also be activated by other metabotropic processes evoked by acetylcholine and tachykinin. The molecular nature and the role of this depolarizing channel are unknown, but its electrophysiological properties suggest that it could lie within the transient receptor potential channel family and could regulate the firing properties of the afferent neurons. Studies on the vestibular partition (VHC and VGN) are sparse but have also shown the expression of P2X and P2Y receptors. There is still little evidence of functional P1 (adenosine) receptors in the afferent system of the inner ear.  相似文献   

7.
In the present study we studied platelet-activating factor (PAF)-, and ATP-induced increases in intracellular Ca2+ concentration ([Ca2+]i) using RAW 264.7 macrophages filled with fura-2/AM and imaged with fluorescence video microscopy. We found that the prevalence of detectable [Ca2+]i responses to PAF application was significantly higher in the presence of dantrolene. Dantrolene itself significantly decreased basal [Ca2+]i of macrophages compared to control cases after a 20-min incubation period. In the dantrolene-treated cells even the peak [Ca2+]i in response to PAF (as an average of all cells) was below the baseline of control suggesting that decreased [Ca2+]i plays a permissive role in the Ca2+ rise induced by PAF in macrophages. In contrast to the effect of PAF, neither the amplitude of response to ATP nor the frequency of responding cells changed significantly during dantrolene treatment in our experiments. These cells were able to respond to a standard immune stimulus as well: lipopolysaccharide (LPS) was able to increase [Ca2+]i. Our data indicate that the effectiveness of PAF to increase [Ca2+]i in RAW 264.7 macrophages depends on the resting [Ca2+]i. It has also been shown in this study that PAF and ATP differently regulate Ca2+ homeostasis in macrophages during inflammatory response and therefore they possibly differently modulate cytokine production by macrophages.  相似文献   

8.
To study changes in the cytoplasmic Ca2+ concentration ([Ca2+]i) and the total amount of calcium in cells, we used, respectively, the fluorescent dye fura 2/AM and the metallochrome dye arsenazo III. The total amount of calcium in acinar cells after their incubation in calcium-free ATP-containing extracellular solution decreased. The action of ATP induced a dose-dependent increase in the [Ca2+]i; the EC50 was, on average, 130 ± ± 36 μM. Calcium transients induced by ATP demonstrated no desensitization. Against the background of a blocker of ionotropic P2X receptors, pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid, we observed a decrease in the ATP-induced calcium transients by 72%. In addition, these transients were reduced by 65% in the calcium-free milieu, while after thapsigargin-induced exhaustion of the endoplasmic reticulum store they disappeared. This is indicative of the involvement of metabotropic P2Y receptors in the formation of the above calcium transients. Therefore, P2X and P2Y receptors participate in ATP-induced calcium signalling in acinar cells of the submandibular salivary gland; activation of these channels results in a rise in the [Ca2+]i. The P2X receptors to a higher extent contribute to the formation of calcium signals; the P2Y-determined increase in the [Ca2+]i is smaller (equal to about 35%). Therefore, the functionally active ligand-operated ionotropic P2Y receptors and metabotropic G protein-related P2Y receptors do exist in acinar cells of the submandibular salivary gland and play an important role in the control of functioning of this gland. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 395–402, September–December, 2005.  相似文献   

9.
Vibration of the stereociliary bundles activates calcium-permeable mechanotransducer (MT) channels to initiate sound detection in cochlear hair cells. Different regions of the cochlea respond preferentially to different acoustic frequencies, with variation in the unitary conductance of the MT channels contributing to this tonotopic organization. Although the molecular identity of the MT channel remains uncertain, two members of the transmembrane channel–like family, Tmc1 and Tmc2, are crucial to hair cell mechanotransduction. We measured MT channel current amplitude and Ca2+ permeability along the cochlea’s longitudinal (tonotopic) axis during postnatal development of wild-type mice and mice lacking Tmc1 (Tmc1−/−) or Tmc2 (Tmc2−/−). In wild-type mice older than postnatal day (P) 4, MT current amplitude increased ∼1.5-fold from cochlear apex to base in outer hair cells (OHCs) but showed little change in inner hair cells (IHCs), a pattern apparent in mutant mice during the first postnatal week. After P7, the OHC MT current in Tmc1−/− (dn) mice declined to zero, consistent with their deafness phenotype. In wild-type mice before P6, the relative Ca2+ permeability, PCa, of the OHC MT channel decreased from cochlear apex to base. This gradient in PCa was not apparent in IHCs and disappeared after P7 in OHCs. In Tmc1−/− mice, PCa in basal OHCs was larger than that in wild-type mice (to equal that of apical OHCs), whereas in Tmc2−/−, PCa in apical and basal OHCs and IHCs was decreased compared with that in wild-type mice. We postulate that differences in Ca2+ permeability reflect different subunit compositions of the MT channel determined by expression of Tmc1 and Tmc2, with the latter conferring higher PCa in IHCs and immature apical OHCs. Changes in PCa with maturation are consistent with a developmental decrease in abundance of Tmc2 in OHCs but not in IHCs.  相似文献   

10.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

11.
12.
HKC‐8 cells are a human‐derived renal proximal tubular cell line and provide a useful model system for the study of human renal cell function. In this study, we aimed to determine [Ca2+]i signalling mediated by P2 receptor in HKC‐8. Fura‐2 and a ratio imaging method were employed to measure [Ca2+]i in HKC‐8 cells. Our results showed that activation of P2Y receptors by ATP induced a rise in [Ca2+]i that was dependent on an intracellular source of Ca2+, while prolonged activation of P2Y receptors induced a rise in [Ca2+]i that was dependent on intra‐ and extracellular sources of Ca2+. Pharmacological and molecular data in this study suggests that TRPC4 channels mediate Ca2+ entry in coupling to activation of P2Y in HKC‐8 cells. U73221, an inhibitor of PI‐PLC, did not inhibit the initial ATP‐induced response; whereas D609, an inhibitor of PC‐PLC, caused a significant decrease in the initial ATP‐induced response, suggesting that P2Y receptors are coupled to PC‐PLC. Although P2X were present in HKC‐8, The P2X agonist, α,β me‐ATP, failed to cause a rise in [Ca2+]i. However, PPADS at a concentration of 100 µM inhibits the ATP‐induced rise in [Ca2+]i. Our results indicate the presence of functional P2Y receptors in HKC‐8 cells. ATP‐induced [Ca2+]i elevation via P2Y is tightly associated with PC‐PLC and TRP channel. J. Cell. Biochem. 109: 132–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Bovine trophoblasts actively proliferate to elongate blastocysts before implantation. The trophoblast at this stage secretes cytokines and starts to differentiate into an endocrine cell (binucleate cell) for successful pregnancy. Intracellular calcium ([Ca2+]i) may act as a second messenger in the trophoblast response. In this study, we investigated [Ca2+]i signals in a bovine trophoblast cell line (BT-1) using fura-2 fluorescence. We found that an application of ATP (1 M) induced a transient increase in [Ca2+]i in BT-1 cells. The ATP-induced increase was not affected by the removal of extracellular Ca2+, but was suppressed by suramin (100 M), an antagonist of P2 receptors. Pretreatment with pertussis toxin (0.1 or 1 g/ml) partially inhibited the response to ATP. The order of potency to increase [Ca2+]i was ATP=UTP>ADP. ATP-induced [Ca2+]i responses preferentially occurred in cells at the periphery of the colony. The reduced responses at the center of the colony were associated with an increase in cell density and decrease in bromodeoxyuridine incorporation. These results indicated that ATP stimulated P2Y receptors coupled to pertussis toxin-sensitive and -insensitive G proteins, leading to an increase in [Ca2+]i as a result of release of Ca2+ from intracellular stores in BT-1 cells. The occurrence of ATP-induced [Ca2+]i signals depended on the cell confluence and reflected the high proliferative activity of the trophoblast cell population.This work was supported by grants from the Bio-oriented Technology Research Advancement Institution (BRAIN), and the Organized Research Combination System in the Science and Technology Agency of Japan. H.N. is a domestic research fellow supported by Japan Society for the Promotion of Science. A.S. is supported by a post-doctoral fellowship from the Japan Science and Technology Corporation.  相似文献   

14.
15.
ATP-Activated Nonselective Cation Current in NG108-15 Cells   总被引:5,自引:0,他引:5  
Abstract: ATP (1 mM) induced a biphasic increase in intracellular Ca2+ concentration ([Ca2+]i), i.e., an initial transient increase decayed to a level of sustained increase, in NG108-15 cells. The transient increase was inhibited by a phospholipase C inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), whereas the sustained increase was abolished by removal of external Ca2+. We examined the mechanism of the ATP-elicited sustained [Ca2+]i increase using the fura-2 fluorescent method and the whole-cell patch clamp technique. ATP (1 mM) induced a membrane current with the reversal potential of 12.5 ± 0.8 mV (n = 10) in Tyrode external solution. The EC50 of ATP was ~0.75 mM. The permeability ratio of various cations carrying this current was Na+ (defined as 1) > Li+ (0.92 ± 0.01; n = 5) > K+ (0.89 ± 0.03; n = 6) > Rb+ (0.55 ± 0.02; n = 6) > Cs+ (0.51 ± 0.01; n = 5) > Ca2+ (0.22 ± 0.03; n = 3) > N-methyl-d -glucamine (0.13 ± 0.01; n = 5), suggesting that ATP activated a nonselective cation current. The ATP-induced current was larger at lower concentrations of external Mg2+. ATP analogues that induced the current were 2-methylthio-ATP (2MeSATP), benzoylbenzoic-ATP, adenosine 5′-thiotriphosphate (ATPγS), and adenosine 5′-O-(2-thiodiphosphate), but not adenosine, ADP, α,β-methylene-ATP (AMPCPP), β,γ-methylene-ATP (AMPPCP), or UTP. Concomitant with the current data, 2MeSATP and ATPγS, but not AMPCPP or AMPPCP, increased the sustained [Ca2+]i increase. We conclude that ATP activates a class of Ca2+-permeable nonselective cation channels via the P2z receptor in NG108-15 cells.  相似文献   

16.
Abstract: We found that extracellular ATP can increase the intracellular Ca2+ concentration ([Ca2+]i) in mouse pineal gland tumor (PGT-β) cells. Studies of the [Ca2+]i rise using nucleotides and ATP analogues established the following potency order: ATP, adenosine 5′-O-(3-thiotriphosphate) ≥ UTP > 2-chloro-ATP > 3′-O-(4-benzoyl)benzoyl ATP, GTP ≥ 2-methylthio ATP, adenosine 5′-O-(2-thiodiphosphate) (ADPβS) > CTP. AMP, adenosine, α,β-methyleneadenosine 5′-triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and UMP had little or no effect on the [Ca2+]i rise. Raising the extracellular Mg2+ concentration to 10 mM decreases the ATP-and UTP-induced [Ca2+]i rise, because the responses depend on the ATP4? and UTP4? concentrations, respectively. The P2U purinoceptor-selective agonist UTP and the P2Y purinoceptor-selective agonist ADPβS induce inositol 1,4,5-trisphosphate generation in a concentration-dependent manner with maximal effective concentrations of ~100 µM. In sequential stimulation, UTP and ADPβS do not interfere with each other in raising the [Ca2+]i. Costimulation with UTP and ADPβS results in additive inositol 1,4,5-trisphosphate generation to a similar extent as is achieved with ATP alone. Pretreatment with pertussis toxin inhibits the action of UTP and ATP by maximally 45–55%, whereas it has no effect on the ADPβS response. Treatment with 1 µM phorbol 12-myristate 13-acetate inhibits the ADPβS-induced [Ca2+]i rise more effectively than the ATP- and UTP-induced responses. These results suggest that P2U and P2Y purinoceptors coexist on PGT-β cells and that both receptors are linked to phospholipase C.  相似文献   

17.
Outer hair cells (OHC) of the mammalian cochlea modulate the inner hair cell (IHC) mechanoelectrical transduction of sound. They are contacted by synapsing efferent neurons from the CNS, their main efferent neurotransmitter being acetylcholine (ACh). OHC function and in particular their control of [Ca2+]i is highly important and is modulated by ACh and also by other substances including extracellular (EC) ATP. OHC carry at their efferent synapse a not yet completely identified neuronal type of ionotropic ACh receptor (AChR), with an unusual pharmacology, which is, in vivo and in vitro, reversibly blocked by α-bungarotoxin (α-bgtx). The AChR mediates a fast influx of Ca2+ into OHC which, in turn, activates a closeby located outwardly-directed Ca2+-dependent K+-channel, thus shortly hyperpolarizing the cell. A cloned homomeric α9 nAChR mimicks the function and pharmacology of this receptor. We here report results from a study designed to observe only slower effects triggered by EC ATP and the ACh-AChR system. EC presence of ATP at OHC increases [Ca2+]i by activating both P2x and P2y purinoceptors and also by indirect activation of OHC L-type Ca2+ -channels. The L-type channel activation is responsible for a large part of the [Ca2+]i increase. Simultaneous EC presence of ACh and ATP at OHC was found to depress ATP-induced effects on OHC [Ca2+]i, an effect that is completely blocked in the presence of α-bgtx. Our observations suggest that the ACh-AChR system is involved in the modulation of the observed EC ATP-triggered events; possibly the OHC AChR is able to act both in its well known rapid ionotropic way, but also, perhaps after modification in a slower, metabotropic way interfering with the EC ATP-induced [Ca2+]i increase.

Résumé

Nos observations suggèrent que le système ACh-RACh est impliqué dans la modulation des événements induits par l'ATP extracellulaire ; il est possible que les RACh des cellules ciliées soient capables d'agir à la fois par la voie rapide ionotropique mais aussi, peut-être, par une modification d'une voie métabotropique plus lente interférant avec l'augmentation de [Ca2+] intracellulaire induite par l'ATP extracellulaire.  相似文献   

18.
The effect of extracellular ATP was studied in PC12 cells, a neurosecretory line that releases ATP. The addition of micromolar concentrations of ATP to PC12 cells evoked a transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i), as measured with the Ca2+-dye fura 2. AMP and adenosine were without effect, ruling out the involvement of P1 receptors in mediating this response. The increase in [Ca2+]i was reduced in calcium-free media and virtually eliminated by the addition of EGTA, suggesting that calcium influx was the primary response initiated by extracellular ATP. Nucleotide triphosphates such as UTP and, to a lesser degree, ITP also evoked an increase in [Ca2+]i while GTP and CTP had little effect. In order to identify the receptor subtype mediating this response, the efficacy of ATP and ATP cogeners was assessed. The rank order potency was ATP > adenosine 5′-[γ-thio]triphosphate > ADP > 2-methylthioadenosine triphosphate (2-MeSATP) ~ adenosine 5′-[β-thio]diphosphate ? adenosine 5′-[αβ-methylene] triphosphate, adenosine 5′-[βγ-imido]triphosphate. This profile is not characteristic of either the P2X or the conventional P2Y receptors. The Ca2+ response exhibited desensitization to ATP that was dependent on the extracellular metabolism of ATP. UTP was equally effective in desensitizing the response. ATP, UTP, ITP, and to a much lesser extent 2MeSATP increased inositol phosphate production in a dose-dependent manner, suggesting receptor coupling to phosphatidylinositol-specific phospholipase C. These data are consistent with the view that PC12 cells express a class of non-P2Y nucleotide receptors (P2N) that mediate calcium influx and the accumulation of inositol phosphates. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The endothelin (ET) isoforms ET-1, ET-2 and ET-3 applied at 100 nM triggered a transient increase in [Ca2+]i in Bergmann glial cells in cerebellar slices acutely isolated from 20–25 day-old mice. The intracellular calcium concentration ([Ca2+]i) was monitored using Fura-2-based ([Ca2+]i) microfluorimetry. The ET-triggered ([Ca2+]i) transients were mimicked by ET, receptor agonist BO-3020 and were inhibited by ETB receptor antagonist BQ-788. ET elevated [Ca2+]i in Ca2+-free extracellular solution and the ET-triggered [Ca2+]i elevation was blocked by 500 nM thapsigargin indicating that the [Ca2+]i was released from InsP3 sensitive intracellular pools. The ET-triggered [Ca2+]i increase in Ca2+-free solution was shorter in duration. Restoration of normal extracellular [Ca2+] briefly after the ET application induced a second [Ca2+]i increase indicating the presence of a secondary Ca2+ influx which prolongs the Ca2+ signal. Pre-application of 100 μM ATP or 10 μM noradrenaline blocked the ET response suggesting the involvement of a common Ca2+ depot. The expression of ETB receptor mRNAs in Bergmann glial cells was revealed by single-cell RT-PCR. The mRNA was also found in Purkinje neurones, but no Ca2+ signalling was triggered by ET. We conclude that Bergmann glial cells are endowed with functional ETB receptors which induce the generation of intracellular [Ca2+]i signals by activation of Ca2+ release from InsP3-sensitive intracellular stores followed by a secondary Ca2+ influx.  相似文献   

20.
Extracellular nucleotides exert autocrine/paracrine effects on ion transport by activating P2 receptors. We studied the effects of extracellular ATP and UTP on the cystic fibrosis transmembrane conductance regulator (CFTR) channel stably expressed in Chinese Hamster Ovary cells (CHO-BQ1 cells). CFTR activity was measured using the (125I) iodide efflux technique and whole-cell patch-clamp recording in response to either forskolin or xanthine derivatives. Using RT-PCR and intracellular calcium concentration ([Ca2+]i) measurement, we showed that CHO-BQ1 cells express P2Y2 but not P2Y4 receptors. While ATP and UTP induced similar increases in [Ca2+]i, pre-addition by one of these two agonists desensitized the response for the other, suggesting that ATP- and UTP-induced [Ca2+]i increases were mediated by a common receptor, which was identified as the P2Y2 subtype. CFTR activity was reduced by ATP and UTP but not by ADP or adenosine applications. This inhibitory effect of ATP on CFTR activity was not due to a change in cAMP level. Furthermore, CFTR activation by forskolin or IBMX failed to promote [Ca2+]i increase, suggesting that CFTR activation did not generate an ATP release large enough to stimulate P2Y2 receptors. Taken together, our results show that endogenous P2Y2 receptor activation downregulates CFTR activity in a cAMP-independent manner in CHO cells. B. Marcet and V. Chappe contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号