首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Identification of soybean microRNAs and their targets   总被引:2,自引:3,他引:2  
Zhang B  Pan X  Stellwag EJ 《Planta》2008,229(1):161-182
  相似文献   

4.
Identification of cotton microRNAs and their targets   总被引:10,自引:0,他引:10  
Zhang B  Wang Q  Wang K  Pan X  Liu F  Guo T  Cobb GP  Anderson TA 《Gene》2007,397(1-2):26-37
  相似文献   

5.
Barozai MY 《Gene》2012,499(1):163-168
  相似文献   

6.
Identification of 188 conserved maize microRNAs and their targets   总被引:2,自引:0,他引:2  
Zhang B  Pan X  Anderson TA 《FEBS letters》2006,580(15):3753-3762
  相似文献   

7.
8.
Sun G  Stewart CN  Xiao P  Zhang B 《PloS one》2012,7(3):e32017
Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress. This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good candidates for improving switchgrass as a biofuel crop by transgenic technology.  相似文献   

9.
10.
Populus euphratica is an ideal model system for research into the abiotic stress resistance research of woody plants. Although microRNAs have been found in poplars and have been shown to have diverse biological functions, a majority of them are genus- or specie-specific and few microRNAs have been found in P. euphratica to date. In this study, microRNA cloning and computational expressed sequence tag analysis were used to identify 72 putative miRNA sequences in P. euphratica. These sequences could be classified into 21 families, 12 of which were novel, increasing the number of known poplar microRNA families from 42 to 54. Expression analysis indicated that five P. euphratica microRNAs were induced by dehydration stress. Bioinformatics prediction showed that the 130 target genes are involved in development, resistance to stress, and other cellular processes. These results suggest several roles for miRNAs in the regulatory networks associated with the abiotic stress resistance of tree species.  相似文献   

11.
12.
Zhang J  Zeng R  Chen J  Liu X  Liao Q 《Gene》2008,423(1):1-7
MicroRNAs (miRNAs) are a class of highly conserved endogenous non-coding small RNAs crossing kingdoms of organisms. By searching known miRNAs identified from plant species against tomato nucleotide sequences, 13 pre-miRNAs of the nine mature miRNAs were found, amongst, six had been cloned. To confirm our prediction, a miRNA-detecting microarray was designed with probes complementary to all non-redundant mature plant miRNAs documented to date. After hybridizing with small RNAs extracted from tomato leaf tissue, 78 highly expressed mature miRNAs were detected, including all the miRNAs predicted above. Conformation of some miRNAs expression by Northern hybridization indicated that they were highly accumulated not only in leaf tissues but also in roots and stems. Additional BLAST searches with newly recognized miRNAs against tomato mRNAs from NCBI yielded 23 potential targets mainly associated with the phase change from vegetative to generative growth, with flower development and with responding to plant hormone and virus stress.  相似文献   

13.
14.
15.
东方蜜蜂微孢子虫孢子中微小RNA的鉴定与分析   总被引:1,自引:0,他引:1  
【目的】丰富东方蜜蜂微孢子虫Nosema ceranae的微小RNA(microRNA, miRNA)信息,并为深入探究miRNA在病原孢子和病原侵染中的功能提供理论和实验依据。【方法】基于已获得的small RNA-seq数据,利用生物信息学软件对东方蜜蜂微孢子虫的纯净孢子中的miRNA进行鉴定和分析。采用茎环反转录PCR(stem-loop RT-PCR)检测已鉴定的miRNA的表达;通过分子克隆与Sanger测序验证miRNA的序列。使用TargetFinder软件预测这些miRNA的靶基因,并对靶基因进行数据库注释。根据miRNA与靶基因的靶向结合关系构建调控网络,再利用Cytoscape软件进行可视化。【结果】在东方蜜蜂微孢子虫孢子中共鉴定到10个miRNA;这些miRNA的长度分布介于21~25 nt,首位碱基表现出U偏向性,每一位碱基的偏向性差异明显。Stem-loop RT-PCR检测结果表明这10个miRNA均真实表达;Sanger测序结果证实了随机选取的其中2个miRNA的序列真实性。共预测出249个靶基因,其中分别有249, 118, 136和3个靶基因可注释到Nr,Swiss-Prot, KOG和eggNOG数据库。此外,分别有134和71个靶基因可分别注释到GO数据库的30个功能条目和KEGG数据库的54条通路。【结论】本研究揭示了东方蜜蜂微孢子虫孢子中miRNA的存在和表达;这些miRNA通过调控潜在靶基因的表达参与孢子的生命活动。  相似文献   

16.
Selection of energy crops is the first priority for large-scale biofuel production in China.As a major topic, it was extensively discussed in the Second International Symposium on Bioenergy and Biotechnology, held from October 16-19(th), 2010 in Huazhong Agricultural University(HZAU), Wuhan, China, with more than one hundred registered participants(Figure 1).  相似文献   

17.
18.
19.
20.
为了解不同基因型甘蔗(Saccharum officinarum)响应低温胁迫的分子机制,该研究以低温胁迫4 ℃处理 24 h 后的3个不同耐寒性甘蔗品种的叶片为材料进行Illumina HiSeqTM 2000 高通量测序,构建了18个低温胁迫前后sRNA文库。结果表明:(1)共获得分属于84个家族的322个已知miRNA及预测得到110个新miRNA,并在已知miRNA中筛选出100个差异表达miRNA(61个上调,39个下调),新miRNA中筛选出37个差异表达 miRNA(15个上调, 22个下调)。(2)利用psRNATarget、TargetFinder、Tapirhybrid软件对所获得的差异表达miRNA进行靶基因预测,得到1 844个靶基因并进行GO分析揭示其主要功能类别,即分子功能、细胞组分与生物过程。(3)为验证高通量测序数据的可靠性,筛选14个miRNA及其靶基因进行qRT-PCR验证,结果显示这些miRNA均被检测发现且大多表达结果与测序结果一致。(4)鉴定出部分差异表达miRNA的靶基因,这些基因参与植物生长、发育及低温胁迫反应。综上认为,耐寒型甘蔗体内miRNA直接或间接作用靶基因实现表达调控相关代谢途径,对其重要农艺性状均起着关键的调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号