首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C (PKC) has been shown to be activated by parathyroid hormone (PTH) in osteoblasts. Prior evidence suggests that this activation mediates responses leading to bone resorption, including production of the osteoclastogenic cytokine interleukin-6 (IL-6). However, the importance of specific PKC isozymes in this process has not been investigated. A selective antagonist of PKC-beta, LY379196, was used to determine the role of the PKC-beta isozyme in the expression of IL-6 in UMR-106 rat osteoblastic cells and in bone resorption in fetal rat limb bone organ cultures. PTH, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta) induced translocation of PKC-alpha and -beta(I) to the plasma membrane in UMR-106 cells within 5 min. The stimulation of PKC-beta(I) translocation by PTH, TNF-alpha or IL-1 beta was inhibited by LY379196. In contrast, LY379196 did not affect PTH, TNF-alpha-, or IL-1 beta-stimulated translocation of PKC-alpha. PTH, TNF-alpha, and IL-1 beta increased luciferase expression in UMR-106 cells transiently transfected with a -224/+11 bp IL-6 promoter-driven reporter construct. The IL-6 responses were also attenuated by treatment with LY379196. Furthermore, LY379196 inhibited bone resorption elicited by PTH in fetal rat bone organ cultures. These results indicate that PKC-beta(I) is a component of the signaling pathway that mediates PTH-, TNF-alpha-, and IL-1 beta-stimulated IL-6 expression and PTH-stimulated bone resorption.  相似文献   

2.
Tumour necrosis factor α (TNF-α) and interleukin 4 (IL-4) selectively synergise in inducing expression of the mononuclear cell adhesion receptor VCAM-1 (vascular cell adhesion molecule-1) on human umbilical vein endothelialcells (HUVEC), which results in increased adhesiveness of HUVEC for T lymphocytes. This process may be crucial for adherence of circulating lymphocytes prior to their passage from the blood into inflammatory tissues. IL-4 also amplifies production of interleukin 6 (IL-6) and monocyte chemotactic protein-(MCP-1) from TNF-α-activated HUVEC. In the present study we demonstrate that IL-4 enhances production of granulocyte-macrophage colon-stimulating factor (GM-CSF) from TNF-α-stimulated HUVEC. Moreover, using cultured adult saphenous vein and umbilical artery endothelial cells, we show identical effects of IL-4 on TNF-α-induced responses to those observed with endothelial cells of foetal origin. Additionaly, we report here that TNF-α and interferon γ (IFN-γ) synergise in the induction of both the lymphocyte adhesion receptor VCAM-1, and the TNF-α-inducible neutrophil adhesion receptor intercellular adhesion molecule-1, on all three endothelial cell types studied. In contrast, we found that GM-CSF secretion by endothelial cells treated with IFN-γ plus TNF-α was markedly decreased when compared to the response by TNF-α alone. These results suggest that the combined actions of several cytokines, acting sequentially or in concert, may exert differential effects on activation and accumulation of circulating lymphocytes at sites of inflammation.  相似文献   

3.
Cartilage-specific extracellular matrix synthesis is the prerequisite for chondrocyte survival and cartilage function, but is affected by the pro-inflammatory cytokine TNF-α in arthritis. The aim of the present study was to characterize whether the immunoregulatory cytokine IL-10 might modulate cartilage matrix and cytokine expression in response to TNF-α. Primary human articular chondrocytes were treated with either recombinant IL-10, TNF-α or a combination of both (at 10 ng/mL each) or transduced with an adenoviral vector overexpressing human IL-10 and subsequently stimulated with 10 ng/ml TNF-α for 6 or 24 h. The effects of IL-10 on the cartilage-specific matrix proteins collagen type II, aggrecan, matrix-metalloproteinases (MMP)-3, -13 and pro-inflammatory cytokines were evaluated by real-time RT-PCR and immunohistochemistry. Transduced chondrocytes overexpressed high levels of IL-10 which significantly up-regulated collagen type II expression. TNF-α suppressed collagen type II and aggrecan, but increased MMP and cytokine expression in chondrocytes compared to the non-stimulated controls. The TNF-α mediated down-regulation of aggrecan expression was significantly antagonized by IL-10 overexpression, whereas the suppression of collagen type II was barely affected. The MMP-13 and IL-1β expression by TNF-α was slightly reduced by IL-10. These results suggest that IL-10 overexpression modulates some catabolic features of TNF-α in chondrocytes.  相似文献   

4.
5.
6.
Parathyroid hormone (PTH) stimulates both bone formation and resorption by activating diverse osteoblast signalling pathways. Upstream signalling for PTH stimulation of protein kinase C-alpha (PKCalpha) membrane translocation and subsequent expression of the pro-resorptive cytokine interleukin-6 (IL-6) was investigated in UMR-106 osteoblastic cells. PTH 1-34, PTH 3-34, PTHrP and PTH 1-31 stimulated PKCalpha translocation and IL-6 promoter activity. Pharmacologic intervention at the adenylyl cyclase (AC) pathway (forskolin, IBMX, PKI) failed to alter PTH 1-34- or PTH 3-34-stimulated PKCalpha translocation. The phosphoinositol-phospholipase C (PI-PLC) antagonist U73122 slightly decreased PTH 1-34-stimulated PKCalpha translocation; however, the control analogue U73343 acted similarly. Propranolol, an inhibitor of phosphatidic acid (PA) phosphohydrolase, decreased diacylglycerol (DAG) formation and attenuated PTH 1-34- and PTH 3-34-stimulated PKCalpha translocation and IL-6 promoter activity, suggesting a phospholipase D (PLD)-dependent mechanism. This is the first demonstration that PLD-mediated signalling leads to both PKC-alpha translocation and IL-6 promoter activation in osteoblastic cells.  相似文献   

7.
1α,25-Dihydroxy-2β-(3-hydroxypropoxy)vitamin D3 (ED-71), an analog of active vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], possesses a hydroxypropoxy substituent at the 2β-position of 1,25(OH)2D3. ED-71 has potent biological effects on bone and is currently under phase III clinical studies for bone fracture prevention. It is well-known that the synthesis and secretion of parathyroid hormone (PTH) is regulated by 1,25(OH)2D3. Interestingly, during clinical development of ED-71, serum intact PTH in osteoporotic patients did not change significantly upon treatment with ED-71. The reason remains unclear, however. Brown et al. reported that 3-epi-1,25(OH)2D3, an epimer of 1,25(OH)2D3 at the 3-position, shows equipotent and prolonged activity compared to 1,25(OH)2D3 at suppressing PTH secretion. Since ED-71 has a bulky hydroxypropoxy substituent at the 2-position, epimerization at the adjacent and sterically hindered 3-position might be prevented, which may account for its weak potency in PTH suppression observed in clinical studies. We have significant interest in ED-71 epimerization at the 3-position and the biological potency of 3-epi-ED-71 in suppressing PTH secretion. In the present studies, synthesis of 3-epi-ED-71 and investigations of in vitro suppression of PTH using bovine parathyroid cells are described. The inhibitory potency of vitamin D3 analogs were found to be 1,25(OH)2D3 > ED-71 ≥ 3-epi-1,25(OH)2D3  3-epi-ED-71. ED-71 and 3-epi-ED-71 showed weak activity towards PTH suppression in our assays.  相似文献   

8.
In a phase II study, 18 patients with locally spreading melanoma or sarcoma of lower limb were treated by isolation perfusion (ILP) with hyperthermia and local infusion of high dose of recombinant human tumor necrosis factor α (rHuTNF-α) (4 mg). Bioactive TNF-α and interleukin 6 (IL-6) serum levels were measured serially, In the limb, TNF-α rapidly reached a plateau at 2 μ/ml, while IL-6 appeared later and progressively increased until the end of ILP. In the systemic circulation TNF-α rose up to a median concentration of 31 ng/ml after 1 hour, then decreased and became negligible after 6 hours. IL-6 peaked only after 5 hours after start of ILP (median: 36.7 ng/ml). In patients with substantial leakage towards systemic circulation, both cytokines peaked higher and earlier as compared with patients with minimal leakage. No correlation was found between cytokine levels and severity of side effects which in all cases were reversible. We conclude that high dose TNF-α infusion in ILP results in extremely high levels of bioactive TNF-α in the systemic circulation without irreversible side effect, and provokes a delayed blood release of large amounts of IL-6; there was a correlation between leakage from the limb during procedure and the magnitude of systemic cytokines levels.  相似文献   

9.
10.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

11.
In this study, the authors examined the effects of recombinant human interleukin 4 (rhIL-4) and recombinant human tumour necrosis factor alpha (rhTNF-α) alone or in combination on proliferation of the human cytokine dependent myeloid cell line, M-O7e. While rhIL-4 or rhTNF-α alone induced only a weak proliferative response, a synergistic proliferative signal was clearly evident on stimulation of cells with a combination of both cytokines. The stimulatory effect of rhTNF-α is mediated predominantly by the 55-kDa TNF receptor because the agonistic monoclonal antibody Htr-9 and the Trp32Thr86TNF-α mutant protein specific for this receptor type produced similar results to rhTNF-α. In contrast, the Asn143Arg145TNF-α mutant protein specific for the 75-kDa TNF receptor produced only minimal proliferation of M-O7e cells. Using RT-PCR, we found that rhTNF-α rapidly and strongly induced granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA production, while rhIL-4 was a slow and less efficient inducer of GM-CSF mRNA. However, there was little evidence of the TNF-α/IL-4 combination acting synergistically on GM-CSF mRNA production as the levels of GM-CSF mRNA increased only marginally compared with IL-4 or TNF-α alone. Thus, the observed synergistic effect of TNF-α/IL-4 costimulation of M-O7e cells seems to be mediated via induction of GM-CSF secretion rather than an enhanced production of GM-CSF mRNA. Higher levels of GM-CSF were detectable in supernatants of cells treated with both rhIL-4 and rhTNF-α than in cells stimulated with either cytokine alone. Furthermore, addition of a neutralising antibody against GM-CSF abrogated the observed synergistic effect of rhIL?4 and rhTNF-α treatment, indicating that the rhIL-4/THF-α combination acts to significantly increase GM-CSF release which then acts in an autocrine manner to enhance the proliferation of M-O7e cells.  相似文献   

12.
We recently demonstrated the activation of extracellular signal- regulated protein kinase 1 and 2 (ERK1 and ERK2) by IGF-1, FGF-2, and PDGF-BB in normal human osteoblastic (HOB) cells as well as in rat and mouse osteoblastic cells. In this report, we have examined whether c-Jun NH2-Terminal Kinase (JNK) pathway is activated by growth factors and interleukin-1β (IL-1β) in normal HOB and rat UMR-106 cells using immune-complex kinase assay and anti-active JNK antibody, which recognizes activated forms of both JNK1 and JNK2. Results have demonstrated the presence of JNK1 and JNK2 proteins in normal HOB and UMR-106 cells. Both JNK1 and JNK2 were activated by IL-1β. IL-1β preferentially activated JNK pathway in a dose- and time-dependent manner and had little effect on ERK pathway. On the other hand, FGF-2 did not activate JNK but most strongly activated ERK pathway. The activation of JNK was maximal at 20 min whereas maximal activation of ERK1 and ERK2 was observed within 10 min. Results have clearly demonstrated that IL-1β preferentially activates JNK pathway whereas FGF-2 activates ERK pathway in normal human and rat UMR-106 osteoblastic cells. J. Cell. Biochem. 69:87–93, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Tumor necrosis factor (TNF)-α stimulated interleukin (IL)-6 release and induced the phosphorylation of myosin phosphatase targeting subunit (MYPT)-1, a Rho-kinase substrate. The IL-6 release was significantly suppressed by Y-27632 and fasudil, Rho-kinase inhibitors. Although IκB inhibitor suppressed the TNF-α-induced IL-6 release, the Rho-kinase inhibitors did not affect the TNF-α-induced IκB phosphorylation. TNF-α induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p44/p42 MAP kinase. The TNF-α-induced IL-6 release was suppressed by SB203580, a p38 MAPK inhibitor, or SP600125, a SAPK/JNK inhibitor, but not by PD98059, a MAP kinase/extracellular signal-regulated kinase kinase inhibitor. The Rho-kinase inhibitors attenuated the TNF-α-induced phosphorylation of both p38 MAP kinase and SAPK/JNK.Rho-kinase, which has been used for the clinical treatment of cerebral vasospasms, may be involved in other central nervous system (CNS) disorders such as traumatic injury, stroke, neurodegenerative disease and neuropathic pain. TNF-α, a proinflammatory cytokine that affects the CNS through cytokines, such as IL-6, release from neurons, astrocytes and microglia. Therefore, we investigated the involvement of Rho-kinase in the TNF-α-induced IL-6 release from rat C6 glioma cells.These results strongly suggest that Rho-kinase regulates the TNF-α-induced IL-6 release at a point upstream from p38 MAPK and SAPK/JNK in C6 glioma cells. Therefore, Rho-kinase inhibitor may be considered to be a new clinical candidate for the treatment of CNS disorders in addition to cerebral vasospasms.  相似文献   

14.
15.
T cell release of lymphotoxin-α (LT-α, or TNF-β) is stimulated by pyrogenic exotoxins of Gram-positive bacteria and mitogens. In contrast to TNF-α, it is unknown whether LT-α plays any role in the pathogenesis of sepsis and, in particular, the pathogenesis of Gram-positive sepsis. Sera from patients with sepsis were examined for LT-α and compared with normal volunteers and pregnant women. LT-α was detected in 33% of sepsis sera (mean 608.4 pg/ml SE 306), 16% of normal sera (mean 167 pg/ml SE 87) and 23% of sera from pregnant women (mean 714 pg/ml SE 191). These differences were not significant and there were no differences within species sera when grouped by the type of causative organism, or disease severity. LT-α detected by immunoassay in serum was not bioactive, in contrast to that produced in cell culture. Recombinant soluble TNF receptors (rSTNFR) neutralized the bioactivity of recombinant LT-α at rSTNFR concentrations which did not interfere with immunoreactivity and which are known to prevailin vivo. Hence, LT-α is unlikely to have a critical role in the pathogenesis of sepsis. Much of the potential bioactivity of this lymphokine may be abrogated by TNFR in serum.  相似文献   

16.
In cultured bovine adrenal chromaffin cells expressing Nav1.7 sodium channel isoform, veratridine increased Ser473-phosphorylation of Akt and Ser9-phosphorylation of glycogen synthase kinase-3β by 217 and 195%, while decreasing Ser396-phosphorylation of tau by 36% in a concentration (EC50 = 2.1 μM)- and time (t1/2 = 2.7 min)-dependent manner. These effects of veratridine were abolished by tetrodotoxin or extracellular Ca2+ removal. Veratridine (10 μM for 5 min) increased translocation of Ca2+-dependent conventional protein kinase C-α from cytoplasm to membranes by 47%; it was abolished by tetrodotoxin, extracellular Ca2+ removal, or Gö6976 (an inhibitor of protein kinase C-α), and partially attenuated by LY294002 (an inhibitor of phosphatidylinositol 3-kinase). LY294002 (but not Gö6976) abrogated veratridine-induced Akt phosphorylation. In contrast, either LY294002 or Gö6976 alone attenuated veratridine-induced glycogen synthase kinase-3β phosphorylation by 65 or 42%; however, LY294002 plus Gö6976 completely blocked it. Veratridine (10 μM for 5 min)-induced decrease of tau phosphorylation was partially attenuated by LY294002 or Gö6976, but completely blocked by LY294002 plus Gö6976; okadaic acid or cyclosporin A (inhibitors of protein phosphatases 1, 2A, and 2B) failed to alter tau phosphorylation. These results suggest that Na+ influx via Nav1.7 sodium channel and the subsequent Ca2+ influx via voltage-dependent calcium channel activated (1) Ca2+/protein kinase C-α pathway, as well as (2) Ca2+/phosphatidylinositol 3-kinase/Akt and (3) Ca2+/phosphatidylinositol 3-kinase/protein kinase C-α pathways; these parallel pathways converged on inhibitory phosphorylation of glycogen synthase kinase-3β, decreasing tau phosphorylation.  相似文献   

17.
A three-dimensional collagen lattice can provide skin fibroblasts with a cell culture environment that simulates normal dermis. Such a collagen matrix environment regulates interstitial collagenase (type I metalloproteinase [MMP-1], collagenase-1) and collagen receptor α2 subunit mRNA expression in both unstimulated or platelet-derived growth factor–stimulated dermal fibroblasts (Xu, J., and R.A.F. Clark. 1996. J. Cell Biol. 132:239–249). Here we report that the collagen gel can signal protein kinase C (PKC)-ζ activation in human dermal fibroblasts. An in vitro kinase assay demonstrated that autophosphorylation of PKC-ζ immunoprecipitates was markedly increased by a collagen matrix. In contrast, no alteration in PKC-ζ protein levels or intracellular location was observed. DNA binding activity of nuclear factor κB (NF-κB), a downstream regulatory target of PKC-ζ, was also increased by fibroblasts grown in collagen gel. The composition of the NF-κB/Rel complexes that contained p50, was not changed. The potential role of PKC-ζ in collagen gel–induced mRNA expression of collagen receptor α2 subunit and human fibroblast MMP-1 was assessed by the following evidence. Increased levels of α2 and MMP-1 mRNA in collagen gel–stimulated fibroblasts were abrogated by bisindolylmaleimide GF 109203X and calphostin C, chemical inhibitors for PKC, but retained when cells were depleted of 12-myristate 13-acetate (PMA)–inducible PKC isoforms by 24 h of pretreatment with phorbol PMA. Antisense oligonucleotides complementary to the 5′ end of PKC-ζ mRNA sequences significantly reduced the collagen lattice–stimulated α2 and MMP-1 mRNA levels. Taken together, these data indicate that PKC-ζ, a PKC isoform not inducible by PMA or diacylglycerol, is a component of collagen matrix stimulatory pathway for α2 and MMP-1 mRNA expression. Thus, a three-dimensional collagen lattice maintains the dermal fibroblast phenotype, in part, through the activation of PKC-ζ.  相似文献   

18.
In rat luteal cells labeled with (3H]oleic acid, PGF-stimulated phospholipase D (PLD) activation was investigated. The PLD activity was detected by measuring the accumulation of [3H]phosphatidylethanol (PtdEt) in the presence of ethanol. PGF stimulated PtdEt accumulation at concentrations of more than 100 nM in the presence of ethanol. However, PtdEt accumulation did not change in the absence of ethanol. PGF (1 μM) increased PtdEt accumulation after 1 min, and the accumulation reached a plateau by 2–3 min. These results indicate that PGF activates PLD in rat luteal cells. U-73122, a phospholipase C (PLC) inhibitor, and staurosporine, a protein kinase C (PKC) inhibitor, did not inhibit PGF-stimulated [3H]PtdEt accumulation. These results suggest that PGF-induced PLD activation is different from PLC-PKC systems. We reported previously that PGF stimulated the release of arachidonic acid. The effects of indomethacin, nordihydroguaiaretic acid (NDGA), and 5,8,11,14-eicosatetraynoic acid (ETYA), inhibitors of arachidonic acid metabolism, on PGF-stimulated PtdEt accumulation were examined. Pretreatment with indomethacin enhanced PGF-induced PtdEt accumulation. In contrast, pretreatment with NDGA and ETYA inhibited PGF-induced PtdEt accumulation. It is suggested that PGF-stimulated PLD activation is mediated via lipoxygenase products.  相似文献   

19.
Cytokines are known to increase the production of prostaglandins by human decidual cells, but negative regulators have not been identified. We have examined the effects of dexamethasone and progesterone on prostaglandin (PG) E2 synthesis by cultured human first trimester decidual cells. The numbers of cyclooxygenase (COX) enzyme positive cells were visualised by immunocytochemistry, using antibodies specific for COX-1 and COX-2. Interleukin-1β stimulated the production of prostaglandins E2 and F2α dose-dependently, and this was associated with increased numbers of COX-2 positive cells. Progesterone (10−7−10−6 M) and dexamethasone (10−7−10−6 M) inhibited basal and interleukin-1β-stimulated prostaglandin production, and decreased the numbers of COX-2 positive cells. Neither interleukin-1β nor the steroids affected numbers of COX-1 positive cells. COX-2 seems to be the main enzyme controlling the synthesis of PGE2 by human decidual cells, and may be negatively regulated by progesterone.  相似文献   

20.
Although tumor necrosis factor-α (TNF-α) is a known major inflammatory mediator in inflammatory bowel disease (IBD) and has various effects on intestinal epithelial cell (IEC) homeostasis, the changes in IECs in the early inflammatory state induced during short-time treatment (24 h) with TNF-α remain unclear. In this study, we investigated TNF-α-induced alterations in IECs in the early inflammatory state using mouse jejunal organoids (enteroids). Of the inflammatory cytokines, i.e., TNF-α, IL-1β, IL-6, and IL-17, only TNF-α markedly increased the mRNA level of macrophage inflammatory protein 2 (MIP-2; the mouse homologue of interleukin-8), which is induced in the early stages of inflammation. TNF-α stimulation (3 h and 6 h) decreased the mRNA level of the stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) and polycomb group ring finger 4 and the progenitor cell marker prominin-1, which is also known as CD133. In addition, TNF-α treatment (24 h) decreased the number of Lgr5-positive cells and enteroid proliferation. TNF-α stimulation at 3 h and 6 h also decreased the mRNA level of chromogranin A and mucin 2, which are respective markers of enteroendocrine and goblet cells. Moreover, enteroids treated with TNF-α (24 h) not only decreased the integrity of tight junctions and cytoskeletal components but also increased intercellular permeability in an influx test with fluorescent dextran, indicating disrupted intestinal barrier function. Taken together, our findings indicate that short-time treatment with TNF-α promotes the inflammatory response and decreases intestinal stem cell activity and barrier function.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10616-021-00487-y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号