首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocytosis and vesicle trafficking during tip growth of root hairs   总被引:13,自引:0,他引:13  
Summary. The directional elongation of root hairs, “tip growth”, depends on the coordinated and highly regulated trafficking of vesicles which fill the tip cytoplasm and are active in secretion of cell wall material. So far, little is known about the dynamics of endocytosis in living root hairs. We analyzed the motile behaviour of vesicles in the apical region of living root hairs of Arabidopsis thaliana and of Triticum aestivum by live cell microscopy. For direct observation of endocytosis and of the fate of endocytic vesicles, we used the fluorescent endocytosis marker dyes FM 1-43 and FM 4-64. Rapid endocytosis was detected mainly in the tip, where it caused a bright fluorescence of the apical cytoplasm. The internalized membranes proceeded through highly dynamic putative early endosomes in the clear zone to larger endosomal compartments in the subapical region that are excluded from the clear zone. The internalized cargo ended up in the dynamic vacuole by fusion of large endosomal compartments with the tonoplast. Before export to these lytic compartments, putative early endosomes remained in the apical zone, where they most probably recycled to the plasma membrane and back into the cytoplasm for more than 30 min. Endoplasmic reticulum was not involved in trafficking pathways of endosomes. Actin cytoskeleton was needed for the endocytosis itself, as well as for further membrane trafficking. The actin-depolymerizing drug latrunculin B modified the dynamic properties of vesicles and endosomes; they became immobilized and aggregated in the tip. Treatment with brefeldin A inhibited membrane trafficking and caused the disappearance of FM-containing vesicles and putative early endosomes from the clear zone; labelled structures accumulated in motile brefeldin A-induced compartments. These large endocytic compartments redispersed upon removal of the drug. Our results hence prove that endocytosis occurs in growing root hairs. We show the localization of endocytosis in the tip and indicate specific endomembrane compartments and their recycling. Correspondence and reprints: Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 14, 845 23 Bratislava, Slovak Republic.  相似文献   

2.
Structural sterols are abundant in the plasma membrane of root apex cells in Arabidopsis thaliana. They specifically accumulate in trichoblasts during the prebulging and bulge stages and show a polar accumulation in the tip during root hair elongation but are distributed evenly in mature root hairs. Thus, structural sterols may serve as a marker for root hair initiation and growth. In addition, they may predict branching events in mutants with branching root hairs. Structural sterols were detected using the sterol complexing fluorochrome filipin. Application of filipin caused a rapid, concentration-dependent decrease in tip growth. Filipin-complexed sterols accumulated in globular structures that fused to larger FM4-64–positive aggregates in the tip, so-called filipin-induced apical compartments, which were closely associated with the plasma membrane. The plasma membrane appeared malformed and the cytoarchitecture of the tip zone was affected. Trans-Golgi network/early endosomal compartments containing molecular markers, such as small Rab GTPase RabA1d and SNARE Wave line 13 (VTI12), locally accumulated in these filipin-induced apical compartments, while late endosomes, endoplasmic reticulum, mitochondria, plastids, and cytosol were excluded from them. These data suggest that the local distribution and apical accumulation of structural sterols may regulate vesicular trafficking and plasma membrane properties during both initiation and tip growth of root hairs in Arabidopsis.  相似文献   

3.
We have used a lipophilic styryl dye, N-(3-triethylammoniumpropyl)-4- (p-diethylaminophenyl-hexatrienyl) pyridinium dibromide (FM 4-64), as a vital stain to follow bulk membrane-internalization and transport to the vacuole in yeast. After treatment for 60 min at 30 degrees C, FM 4- 64 stained the vacuole membrane (ring staining pattern). FM 4-64 did not appear to reach the vacuole by passive diffusion because at 0 degree C it exclusively stained the plasma membrane (PM). The PM staining decreased after warming cells to 25 degrees C and small punctate structures became apparent in the cytoplasm within 5-10 min. After an additional 20-40 min, the PM and cytoplasmic punctate staining disappeared concomitant with staining of the vacuolar membrane. Under steady state conditions, FM 4-64 staining was specific for vacuolar membranes; other membrane structures were not stained. The dye served as a sensitive reporter of vacuolar dynamics, detecting such events as segregation structure formation during mitosis, vacuole fission/fusion events, and vacuolar morphology in different classes of vacuolar protein sorting (vps) mutants. A particularly striking pattern was observed in class E mutants (e.g., vps27) where 500-700 nm organelles (presumptive prevacuolar compartments) were intensely stained with FM 4- 64 while the vacuole membrane was weakly fluorescent. Internalization of FM 4-64 at 15 degrees C delayed vacuolar labeling and trapped FM 4- 64 in cytoplasmic intermediates between the PM and the vacuole. The intermediate structures in the cytoplasm are likely to be endosomes as their staining was temperature, time, and energy dependent. Interestingly, unlike Lucifer yellow uptake, vacuolar labeling by FM 4- 64 was not blocked in sec18, sec14, end3, and end4 mutants, but was blocked in sec1 mutant cells. Finally, using permeabilized yeast spheroplasts to reconstitute FM 4-64 transport, we found that delivery of FM 4-64 from the endosome-like intermediate compartment (labeled at 15 degrees C) to the vacuole was ATP and cytosol dependent. Thus, we show that FM 4-64 is a new vital stain for the vacuolar membrane, a marker for endocytic intermediates, and a fluor for detecting endosome to vacuole membrane transport in vitro.  相似文献   

4.
Sterols are essential factors for endocytosis in animals and yeast. To investigate the sterol structural requirements for yeast endocytosis, we created a variety of ergDelta mutants, each accumulating a distinct set of sterols different from ergosterol. Mutant erg2Deltaerg6Delta and erg3Deltaerg6Delta cells exhibit a strong internalization defect of the alpha-factor receptor (Ste2p). Specific sterol structures are necessary for pheromone-dependent receptor hyperphosphorylation, a prerequisite for internalization. The lack of phosphorylation is not due to a defect in Ste2p localization or in ligand-receptor interaction. Contrary to most known endocytic factors, sterols seem to function in internalization independently of actin. Furthermore, sterol structures are required at a postinternalization step of endocytosis. ergDelta cells were able to take up the membrane marker FM4-64, but exhibited defects in FM4-64 movement through endosomal compartments to the vacuole. Therefore, there are at least two roles for sterols in endocytosis. Based on sterol analysis, the sterol structural requirements for these two processes were different, suggesting that sterols may have distinct functions at different places in the endocytic pathway. Interestingly, sterol structures unable to support endocytosis allowed transport of the glycosylphosphatidylinositol-anchored protein Gas1p from the endoplasmic reticulum to Golgi compartment.  相似文献   

5.
Plant cells possess much of the molecular machinery necessary for receptor-mediated endocytosis (RME), but this process still awaits detailed characterization. In order to identify a reliable and well-characterized marker to investigate RME in plant cells, we have expressed the human transferrin receptor (hTfR) in Arabidopsis protoplasts. We have found that hTfR is mainly found in endosomal (Ara7- and FM4-64-positive) compartments, but also at the plasma membrane, where it mediates binding and internalization of its natural ligand transferrin (Tfn). Cell surface expression of hTfR increases upon treatment with tyrphostin A23, which inhibits the interaction between the YTRF endocytosis signal in the hTfR cytosolic tail and the mu2-subunit of the AP2 complex. Indeed, tyrphostin A23 inhibits Tfn internalization and redistributes most of hTfR to the plasma membrane, suggesting that the endocytosis signal of hTfR is functional in Arabidopsis protoplasts. Co-immunoprecipitation experiments show that hTfR is able to interact with a mu-adaptin subunit from Arabidopsis cytosol, a process that is blocked by tyrphostin A23. In contrast, treatment with brefeldin A, which inhibits recycling from endosomes back to the plasma membrane in plant cells, leads to the accumulation of Tfn and hTfR in larger patches inside the cell, reminiscent of BFA compartments. Therefore, hTfR has the same trafficking properties in Arabidopsis protoplasts as in animal cells, and cycles between the plasma membrane and endosomal compartments. The specific inhibition of Tfn/hTfR internalization and recycling by tyrphostin A23 and BFA, respectively, thus provide valuable molecular tools to characterize RME and the recycling pathway in plant cells.  相似文献   

6.
In eukaryotic cells, compartments of the highly dynamic endomembrane system are acidified to varying degrees by the activity of vacuolar H(+)-ATPases (V-ATPases). In the Arabidopsis thaliana genome, most V-ATPase subunits are encoded by small gene families, thus offering potential for a multitude of enzyme complexes with different kinetic properties and localizations. We have determined the subcellular localization of the three Arabidopsis isoforms of the membrane-integral V-ATPase subunit VHA-a. Colocalization experiments as well as immunogold labeling showed that VHA-a1 is preferentially found in the trans-Golgi network (TGN), the main sorting compartment of the secretory pathway. Uptake experiments with the endocytic tracer FM4-64 revealed rapid colocalization with VHA-a1, indicating that the TGN may act as an early endosomal compartment. Concanamycin A, a specific V-ATPase inhibitor, blocks the endocytic transport of FM4-64 to the tonoplast, causes the accumulation of FM4-64 together with newly synthesized plasma membrane proteins, and interferes with the formation of brefeldin A compartments. Furthermore, nascent cell plates are rapidly stained by FM4-64, indicating that endocytosed material is redirected into the secretory flow after reaching the TGN. Together, our results suggest the convergence of the early endocytic and secretory trafficking pathways in the TGN.  相似文献   

7.
To investigate PtdIns3P localization and function in plants, a fluorescent PtdIns3P-specific biosensor (YFP-2xFYVE) was created. On lipid dot blots it bound specifically and with high affinity to PtdIns3P. Transient expression in cowpea protoplasts labelled vacuolar membranes and highly motile structures undergoing fusion and fission. Stable expression in tobacco BY-2 cells labelled similar motile structures, but labelled vacuolar membranes hardly at all. YFP-2xFYVE fluorescence strongly co-localized with the pre-vacuolar marker AtRABF2b, partially co-localized with the endosomal tracer FM4-64, but showed no overlap with the Golgi marker STtmd-CFP. Treatment of cells with wortmannin, a PI3 kinase inhibitor, caused the YFP-2xFYVE fluorescence to redistribute into the cytosol and nucleus within 15 min. BY-2 cells expressing YFP-2xFYVE contained twice as much PtdIns3P as YFP-transformed cells, but this had no effect on cell-growth or stress-induced phospholipid signalling responses. Upon treatment with wortmannin, PtdIns3P levels were reduced by approximately 40% within 15 min in both cell lines. Stable expression of YFP-2xFYVE in Arabidopsis plants labelled different subcellular structures in root compared with shoot tissues. In addition labelling the motile structures common to all cells, YFP-2xFYVE strongly labelled the vacuolar membrane in leaf epidermal and guard cells, suggesting that cell differentiation alters the distribution of PtdIns3P. In dividing BY-2 cells, YFP-2xFYVE-labelled vesicles surrounded the newly formed cell plate, suggesting a role for PtdIns3P in cytokinesis. Together, these data show that YFP-2xFYVE may be used as a biosensor to specifically visualize PtdIns3P in living plant cells.  相似文献   

8.
Intracellular trafficking of endocytic vesicles in eukaryotes varies with the nature of the cargo molecules and the targeted organelle, and proceeds through an intricate network of internal endosomal compartments. However, the path for fluid-phase endocytosis (FPE), the internalization of external solutes from the apoplast via plasmalemma generated vesicles, remains unresolved despite some indication of a direct transport route to the vacuole. To test this hypothesis, we made use of the membrane-impermeable Na-dependent fluorescent marker Coro-Na in combination with the fluorescent membrane marker FM 4-64 and confocal laser scanning microscopy. When protoplasts from sweet lime juice cells were incubated in Na-free solution, FM 4-64, Coro-Na, and 200 mM sucrose, two distinct types of labeled vesicles were evident. A set of vesicles (1 μm in diameter) was intensely labeled with Coro-Na and to a lesser extent with FM 4-64, whereas the second type of 1–7 μm structures appeared exclusively labeled with FM 4-64. These data demonstrate the parallel functioning of two endocytic pathways in plant cells. In one system, a set of small endocytic vesicles merge with the endosome, whereas a separate set of vesicles fuse to form larger vesicles independent from the endosome. Although it is likely that both vesicle systems eventually contribute to solutes reaching the vacuole, given their size (1–7 μm), and based on previous observations of endocytic vesicle formation protruding from the plasmalemma and merging with the vacuole, we conclude that these latter vesicles constitute the primary FPE vesicle system.  相似文献   

9.
The mechanism by which plasma membrane proteins are transported to vacuoles for degradation has not been well characterized in plants. To clarify how plasma membrane proteins are degraded, we monitored the endocytotic pathway in tobacco suspension-cultured BY-2 cells with a fluorescent endocytosis marker, FM4-64. Because of the efficient and rapid delivery of endosomes to the vacuoles, endosomes were scarcely detectable. Interestingly, we found that E-64d, an inhibitor of papain family proteases, caused the accumulation of a large number of endosomes in the cells under the sucrose-starved condition. This result indicates that E-64d attenuates the fusion of endosomes with vacuoles. We identified two papain homologues, which are localized in the endosomes, with a biotinylated inhibitor. We designated them as endosome-localized papains (ENPs). Immunofluorescent analysis revealed that vacuolar sorting receptor, a marker of prevacuolar compartment (PVC), was localized in the endosomes. This result and their acidic nature show that the endosomes correspond to PVC. These results suggest that ENPs facilitate the final step in the vacuolar trafficking pathway under the sucrose-starved condition. We further examined the effects of E-64d on two transgenic Arabidopsis plants that constitutively express a fusion protein composed of green fluorescent protein (GFP) and a plasma membrane protein (GFP-PIP2a or GFP-LTI6b). GFP fluorescence was observed on the plasma membrane of root cells in these transgenic plants. Treatment with E-64d induced the accumulation of GFP-fluorescent endosomes and inhibited the degradation of these fusion proteins. No GFP fluorescence was observed in vacuoles in E-64d-treated transgenic plants. Taken together, these results suggest that endosomal proteases are required for the fusion of endosomes with vacuoles at the final step in the endocytotic pathway for degradation of plasma membrane proteins in plants.  相似文献   

10.
ABSTRACT: BACKGROUND: In yeast and mammals, many plasma membrane (PM) proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT) machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. RESULTS: Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. CONCLUSIONS: Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route, but it also mediates vacuolar delivery if displayed at the Golgi. In both cases, ubiquitin-tagged proteins travel via early endosomes and multivesicular bodies to the lytic vacuole. This suggests that vacuolar degradation of ubiquitinated proteins is not restricted to PM proteins but might also facilitate the turnover of membrane proteins in the early secretory pathway.  相似文献   

11.
A novel genetic selection was used to identify genes regulating traffic in the yeast endosomal system. We took advantage of a temperature-sensitive mutant in PMA1, encoding the plasma membrane ATPase, in which newly synthesized Pma1 is mislocalized to the vacuole via the endosome. Diversion of mutant Pma1 from vacuolar delivery and rerouting to the plasma membrane is a major mechanism of suppression of pma1ts. 16 independent suppressor of pma1 (sop) mutants were isolated. Identification of the corresponding genes reveals eight that are identical with VPS genes required for delivery of newly synthesized vacuolar proteins. A second group of SOP genes participates in vacuolar delivery of mutant Pma1 but is not essential for delivery of the vacuolar protease carboxypeptidase Y. Because the biosynthetic pathway to the vacuole intersects with the endocytic pathway, internalization of a bulk membrane endocytic marker FM 4-64 was assayed in the sop mutants. By this means, defective endosome-to-vacuole trafficking was revealed in a subset of sop mutants. Another subset of sop mutants displays perturbed trafficking between endosome and Golgi: impaired pro-α factor processing in these strains was found to be due to defective recycling of the trans-Golgi protease Kex2. One of these strains defective in Kex2 trafficking carries a mutation in SOP2, encoding a homologue of mammalian synaptojanin (implicated in synaptic vesicle endocytosis and recycling). Thus, cell surface delivery of mutant Pma1 can occur as a consequence of disturbances at several different sites in the endosomal system.  相似文献   

12.
Although there is growing evidence that endocytosis is important in hyphal tip growth, it has not previously been shown to occur during fungal spore germination. We have analysed and characterized endocytosis during the germination of living conidia of the rice blast fungus, Magnaporthe grisea. Conidia treated with the endocytic markers Lucifer Yellow carbohydrazide, FITC-dextran, and FM4-64 were imaged by confocal microscopy. Internalization of these fluorescent marker dyes by conidia was blocked by chemical and temperature treatments that inhibit endocytosis, and the sequential staining of organelles by the membrane-selective dye FM4-64 was consistent with dye internalization by endocytosis. FM4-64 uptake occurred within 2-3 min of conidial hydration, more than 40 min before the emergence of the germ tube. The times at which each of the three conidial cells initiated dye internalization were different as were the rates of dye uptake by each cell. Using these techniques we have demonstrated for the first time that ungerminated and germinated spores of filamentous fungi undergo endocytosis. Furthermore, internalization of FITC-dextran and Lucifer Yellow carbohydrazide by germinating conidia provides the first direct evidence for fluid-phase endocytosis in a filamentous fungus. FM4-64 was internalized by both ungerminated conidia and conidial germlings on the rice leaf suggesting that endocytosis might play a significant role in spore germination and germ tube growth during the pre-penetration phase of infection.  相似文献   

13.
We applied the endocytic markers FM1-43, FM4-64 and filipin to internodal cells of the green alga Chara corallina. Both FM dyes stained stable, long-living plasma membrane patches with a diameter of up to 1 microm. After 5 min, FM dyes labeled cortical, trembling structures up to 500 nm in size. After 15 min, FM dyes localized to endoplasmic organelles up to 1 microm in diameter, which migrated actively along actin bundles or participated in cytoplasmic mass streaming. After 30-60 min, FM fluorescence appeared in the membrane of small, endoplasmic vacuoles but not in that of the central vacuole. Some of the FM-labeled organelles were also stained by neutral red and lysotracker yellow, indicative of acidic compartments. Filipin, a sterol-specific marker, likewise labeled plasma membrane domains which co-localized with the FM patches. However, internalization of filipin could not be observed. KCN, cytochalasin D, latrunculin B and oryzalin had no effect on size, shape and distribution of FM- and filipin-labeled plasma membrane domains. Internalization of FM dyes was inhibited by KCN but not by drugs which interfere with the actin or microtubule cytoskeleton. Our data indicate that the plasma membrane of characean internodal cells contains discrete domains which are enriched in sterols and probably correspond to clusters of lipid rafts. The inhibitor experiments suggest that FM uptake is active but independent of actin filaments, actin polymerization and microtubules. The possible function of the sterol-rich, FM labeled plasma membrane areas and the significance of actin-independent FM internalization (via endocytosis or energy-dependent flippases) are discussed.  相似文献   

14.
In Arabidopsis root tips cultured in medium containing sufficient nutrients and the membrane-permeable protease inhibitor E-64d, parts of the cytoplasm accumulated in the vacuoles of the cells from the meristematic zone to the elongation zone. Also in barley root tips treated with E-64, parts of the cytoplasm accumulated in autolysosomes and pre-existing central vacuoles. These results suggest that vacuolar and/or lysosomal autophagy occurs constitutively in these regions of cells. 3-Methyladenine, an inhibitor of autophagy, inhibited the accumulation of such inclusions in Arabidopsis root tip cells. Such inclusions were also not observed in root tips prepared from Arabidopsis T-DNA mutants in which AtATG2 or AtATG5, an Arabidopsis homolog of yeast ATG genes essential for autophagy, is disrupted. In contrast, an atatg9 mutant, in which another homolog of ATG is disrupted, accumulated a significant number of vacuolar inclusions in the presence of E-64d. These results suggest that both AtAtg2 and AtAtg5 proteins are essential for autophagy whereas AtAtg9 protein contributes to, but is not essential for, autophagy in Arabidopsis root tip cells. Autophagy that is sensitive to 3-methyladenine and dependent on Atg proteins constitutively occurs in the root tip cells of Arabidopsis.  相似文献   

15.
The hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins of the paramyxovirus simian virus 5 (SV5) are expressed on the surface of virus-infected cells. Although the F protein was found to be expressed stably, the HN protein was internalized from the plasma membrane. HN protein lacks known internalization signals in its cytoplasmic domain that are common to many integral membrane proteins that are internalized via clathrin-coated pits. Thus, the cellular pathway of HN protein internalization was examined. Biochemical analysis indicated that HN was lost from the cell surface with a t1/2 of approximately 45-50 min and turned over with a t1/2 of approximately 2 h. Immunofluorescent analysis showed internalized SV5 HN in vesicle-like structures in a juxtanuclear pattern coincident with the localization of ovalbumin. In contrast the SV5 F glycoprotein and the HN glycoprotein of the highly related parainfluenza virus 3 (hPIV-3) were found only on the cell surface. Immunogold staining of HN on the surface of SV5-infected CV-1 cells and examination using electron microscopy, showed heavy surface labeling that gradually decreased with time. Concomitantly, gold particles were detected in the endosomal system and with increasing time, gold-labeled structures having the morphology of lysosomes were observed. On the plasma membrane approximately 5% of the gold-labeled HN was found in coated pits. The inhibition of the pinching-off of coated pits from the plasma membrane by cytosol acidification significantly reduced HN internalization. Internalized HN was co-localized with gold-conjugated transferrin, a marker for the early endosomal compartments, and with gold-conjugated bovine serum albumin, a marker for late endosomal compartments. Taken together, these data strongly suggest that the HN glycoprotein is internalized via clathrin-coated pits and delivered to the endocytic pathway.  相似文献   

16.
Aims:  To investigate the differences in membrane permeability and the effect on endocytosis of the polyene antimycotics nystatin, filipin and natamycin on germinating fungal conidia.
Methods and Results:  The model system was Penicillium discolor , a food spoilage fungus. Filipin resulted in permeabilization of germinating conidia for the fluorescent probes TOTO-1 and FM4-64, but not for ferricyanide ions. Nystatin caused influx of all these compounds while natamycin did not. Untreated germinating conidia internalize the endocytic marker FM4-64. Pretreatment of germinating conidia with natamycin showed a dose and time dependent inhibition of endocytosis as judged by the lack of formation of early endosomal compartments.
Conclusions:  The results obtained from this study indicated that, unlike nystatin and filipin, natamycin is unable to permeabilize germinating conidia, but interferes with endocytosis in a dose and time dependent manner.
Significance and Impact of the Study:  Natamycin acts via a different mode of action than other polyene antimycotics. These results offer useful information for new strategies to prevent fungal spoilage on food products and infection on agricultural crops. For laboratory use, natamycin can be used as a specific inhibitor of early endocytosis in fungal cells.  相似文献   

17.
Vacuolar protein sorting 1 (Vps1), the yeast homolog to human dynamin, is a GTP hydrolyzing protein, which plays an important role in protein sorting and targeting between the Golgi and late endosomal compartments. In this study, we assessed the functional significance of Vps1 in the membrane traffic towards the vacuole. We show here that vps1Δ cells accumulated FM4-64 to a greater extent than wild-type (WT) cells, suggesting slower endocytic degradation traffic toward the vacuole. In addition, we observed that two endosome-to-vacuole traffic markers, DsRed-FYVE and Ste2-GFP, were highly accumulated in Vps1-deficient cells, further supporting Vps1’s implication in efficient trafficking of endocytosed materials to the vacuole. Noteworthy, a simultaneous imaging analysis in conjunction with FM4-64 pulse-chase experiment further revealed that Vps1 plays a role in late endosome to the vacuole transport. Consistently, our subcellular localization analysis showed that Vps1 is present at the late endosome. The hyperaccumulation of endosomal intermediates in the vps1 mutant cells appears to be caused by the disruption of integrity of HOPS tethering complexes, manifested by mislocalization of Vps39 to the cytoplasm. Finally, we postulate that Vps1 functions together with the Endosomal Sorting Complex Required for Transport (ESCRT) complex at the late endosomal compartments, based on the observation that the double mutants, in which VPS1 along with singular ESCRT I, II and III genes have been disrupted, exhibited synthetic lethality. Together, we propose that Vps1 is required for correct and efficient trafficking from the late endosomal compartments to the vacuole.  相似文献   

18.
We screened a panel of compounds derived from Exo2 - a drug that perturbs post-Golgi compartments and trafficking in mammalian cells - for their effect on the secretory pathway in Arabidopsis root epidermal cells. While Exo2 and most related compounds had no significant effect, one Exo2 derivative, named LG8, induced severe morphological alterations in both the Golgi (at high concentrations) and the endoplasmic reticulum (ER). LG8 causes the ER to form foci of interconnecting tubules, which at the ultrastructural level appear similar to those previously reported in Arabidopsis roots after treatment with the herbicide oryzalin. In cotyledonary leaves, LG8 causes redistribution of a trans Golgi network (TGN) marker to the vacuole. LG8 affects the anterograde secretory pathway by inducing secretion of vacuolar cargo and preventing the brassinosteroid receptor BRI1 from reaching the plasma membrane. Uptake and arrival at the TGN of the endocytic marker FM4-64 is not affected. Unlike the ADP ribosylation factor-GTP exchange factor (ARF-GEF) inhibitor brefeldin A (BFA), LG8 affects these post-Golgi events without causing the formation of BFA bodies. Up to concentrations of 50 μm, the effects of LG8 are reversible.  相似文献   

19.
Vacuolar proton pumps acidify several intracellular membrane compartments in the endocytic pathway. We have examined the distribution of the vacuolar H+ ATPase in LLC-PK1 cells and the structure of the biosynthetically labeled enzyme in membrane fractions enriched for endosomes or lysosomes. LLC-PK1 cells were allowed to internalize cytochrome c-coated colloidal gold as a marker for endocytic compartments. Proton pumps were identified in these cells by staining the cells with a monoclonal antibody against the vacuolar pump detected with either immunogold or immunoperoxidase techniques. H+ ATPase labeling was seen on structures resembling endosomes and lysosomes, but not on Golgi or plasma membrane. To examine the structure of the H+ ATPase in these compartments, we labeled LLC-PK1 cells for 24 h with [35S]methionine and used a Percoll gradient to obtain fractions enriched for endosomes or lysosomes. H+ ATPase immunoprecipitated from both fractions with monoclonal anti-H+ ATPase antibodies had labeled polypeptides of 70, 56, and 31 kDa. On two-dimensional gels, a comparison of the H+ ATPase from the endosomal and lysosomal fractions revealed that the 70-, 56-, and 31-kDa subunits were similar in both fractions. The results show that the vacuolar H+ ATPase in these cells is distributed primarily in endosomes and lysosomes and that the structure of the enzyme is similar in both compartments.  相似文献   

20.
Rho GTPases regulate the actin cytoskeleton, exocytosis, endocytosis, and other signaling cascades. Rhos are subdivided into four subfamilies designated Rho, Racs, Cdc42, and a plant-specific group designated RACs/Rops. This research demonstrates that ectopic expression of a constitutive active Arabidopsis RAC, AtRAC10, disrupts actin cytoskeleton organization and membrane cycling. We created transgenic plants expressing either wild-type or constitutive active AtRAC10 fused to the green fluorescent protein. The activated AtRAC10 induced deformation of root hairs and leaf epidermal cells and was primarily localized in Triton X-100-insoluble fractions of the plasma membrane. Actin cytoskeleton reorganization was revealed by creating double transgenic plants expressing activated AtRAC10 and the actin marker YFP-Talin. Plants were further analyzed by membrane staining with N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) under different treatments, including the protein trafficking inhibitor brefeldin A or the actin-depolymeryzing agents latrunculin-B (Lat-B) and cytochalasin-D (CD). After drug treatments, activated AtRAC10 did not accumulate in brefeldin A compartments, but rather reduced their number and colocalized with FM4-64-labeled membranes in large intracellular vesicles. Furthermore, endocytosis was compromised in root hairs of activated AtRAC10 transgenic plants. FM4-64 was endocytosed in nontransgenic root hairs treated with the actin-stabilizing drug jasplakinolide. These findings suggest complex regulation of membrane cycling by plant RACs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号