首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hamster ovary cells labelled with [14C]thymidine were made permeable, incubated with various concentrations of the intercalating dye ethidium bromide, and centrifuged through neutral sucrose gradients. The gradient profiles of these cells were qualitatively similar to those obtained by centrifuging DNA from untreated, lysed permeable cells through gradients containing ethidium bromide. The sedimentation distance of DNA had a biphasic dependence on the concentration of ethidium bromide, suggesting that the dye altered the amount of DNA supercoiling in situ. The effect of ethidium bromide intercalation on incorporation of [3H]dTMP into acid-precipitable material in an in vitro DNA synthesis mixture was measured. The incorporation of [3H]dTMP was unaffected by less than 1 microgram/ml of ethidium bromide, enhanced up to two-fold by 1--10 microgram/ml, and inhibited by concentrations greater than 10 micrograms/ml. Alkaline sucrose gradient analysis revealed a higher percentage of small DNA fragments (6--20 S) in the cells treated with 2 micrograms/ml ethidium bromide than in control cells. These fragments attained parental size within the same time as the fragments in control cells. In cells treated with 2 micrograms/ml ethidium bromide, a significant fraction of newly synthesized DNA resulted from new starts, whereas in untreated cells practically none of the newly synthesized DNA resulted from new starts. These results suggest that relaxation of DNA supercoiled structures ahead of the replication fork generates spurious initiations of DNA synthesis and that in intact cells the rate of chain elongation is limited by supercoiled regions ahead of the growing point.  相似文献   

2.
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing.  相似文献   

3.
The involvement of DNA polymerases alpha, beta, and delta in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase alpha) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors on MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [3H]thymidine incorporated into repaired DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 micrograms of aphidicolin/mL, 6% by 10 microM BuPdGTP, 13% by anti-(DNA polymerase alpha) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 micrograms of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase alpha) antibodies into HF nuclei. These results indicate that both DNA polymerases delta and beta are involved in repairing DNA damage caused by MNNG.  相似文献   

4.
Adenovirus DNA replication is inhibited by aphidicolin but the inhibition clearly has different parameters than the inhibition of purified DNA polymerase alpha. In adenovirus infected Hela cells, 10 micrograms/ml of aphidicolin reduced viral DNA synthesis by 80%. Cellular DNA synthesis was inhibited by 97% at 0.1 microgram/ml. 10 micrograms/ml of drug had no effect on virus yield or late protein synthesis though higher concentrations of drug (50 micrograms/ml) caused an abrupt cessation of late protein synthesis and 100 micrograms/ml reduced virus yield by 3 logs. Concentrations of the drug from 0.5 microgram/ml to 10 micrograms/ml were found to dramatically slow the rate of DNA chain elongation in vitro but not stop it completely, so that over a long period of time net incorporation was reduced only slightly compared to the control. 50 micrograms/ml or 100 micrograms/ml of drug completely inhibited incorporation in vitro. Initiation of viral DNA replication - covalent attachment of dCMP to the preterminal protein - occurs in vitro. This reaction was found to be insensitive to inhibition by aphidicolin. We thus conclude that aphidicolin exerts its effect on adenovirus DNA chain elongation, but not on the primary initiation event of protein priming.  相似文献   

5.
An assay for visualization of DNA loops undergoing supercoiling changes has been developed. The assay utilizes the fluorescent dye, propidium iodide (PI), which intercalates into the DNA and under the proper conditions causes the supercoiling status of the DNA to change. Thus, the DNA can be seen as a fluorescent halo that changes diameter with PI concentration. At low PI concentrations (0-7.5 micrograms/ml) the supercoils are relaxed with increasing PI, while at higher PI concentrations (7.50-50 micrograms/ml) supercoils in the opposite winding sense are rewound with increasing PI. When HeLa cells were irradiated with 1-20 Gy of 137Cs gamma-rays, the ability to rewind the DNA supercoils was inhibited in a dose-dependent manner, presumably because of the presence of radiation-induced DNA strand breakage, which removed the topological constraints on the DNA loops. These lesions were repaired rapidly during post-irradiation incubation. The ability of the DNA loops to be rewound was restored within 8 min after 10 Gy of gamma-irradiation, such that no difference from control cells could be detected. The half-time for repair of the radiation-induced lesions that inhibit DNA rewinding was similar to that for repair of DNA single strand breaks. The assay has certain advantages over current methods for assaying DNA damage in that it involves measurement of single cells and it does not require the DNA to be labeled with radioactive precursors.  相似文献   

6.
We have investigated the replication capacity of intact nuclei from quiescent cells using Xenopus egg extract. Nuclei, with intact nuclear membranes, were isolated from both exponentially growing and contact- inhibited BALB/c 3T3 fibroblasts by treatment of the cells with streptolysin-O. Flow cytometry showed that > 90% of all contact- inhibited cells and approximately 50% of the exponential cells were in G0/G1-phase at the time of nuclear isolation. Intact nuclei were assayed for replication in the extract by incorporation of [alpha- 32P]dATP or biotin-dUTP into nascent DNA. Most nuclei from exponential cells replicated in the egg extract, consistent with previous results showing that intact G1 nuclei from HeLa cells replicate in this system. In contrast, few nuclei from quiescent cells replicated in parallel incubations. However, when the nuclear membranes of these intact quiescent nuclei were permeabilized with lysophosphatidylcholine prior to addition to the extract, nearly all the nuclei replicated under complete cell cycle control in a subsequent incubation. The ability of LPC-treated quiescent nuclei to undergo DNA replication was reversed by resealing permeable nuclear membranes with Xenopus egg membranes prior to extract incubation demonstrating that the effect of LPC treatment is at the level of the nuclear membrane. These results indicate that nuclei from G1-phase cells lose their capacity to initiate DNA replication following density-dependent growth arrest and suggest that changes in nuclear membrane permeability may be required for the initiation of replication upon re-entry of the quiescent cell into the cell cycle.  相似文献   

7.
Potential for initiation of chromosome replication present in temperature-sensitive, initiation-defective dnaA5 mutants of Escherichia coli B/r incubated at nonpermissive temperature was expressed by shifting to a more permissive temperature (25 degrees C). Upon expression of initiation potential, the rate of [3H]thymidine incorporation varied in a bimodal fashion, i.e., there was an initial burst of incorporation, which lasted 10 to 20 min, then a sudden decrease in incorporation, and finally a second rapid increase in incorporation. Analyses of this incorporation pattern indicated that a round of replication initiated upon expression of initiation potential, but DNA polymerization stopped after replication of 5 to 10% of the chromosome. This round of replication appeared to resume about 30 min later coincident with initiation of a second round of replication. The second initiation was unusually sensitive to low concentrations of novobiocin (ca. 1 microgram/ml) when this inhibitor was added in the presence of chloramphenicol. In the absence of chloramphenicol, novobiocin at this concentration had no detectable effect on DNA replication. It is suggested that cis-acting inhibition, attributable to an attempted second initiation immediately after the first, caused the first round to stall until both it and the second round could resume simultaneously. This DNA replication inhibition, probably caused by overinitiation, could be a consequence of restraints on replication in the vicinity of oriC, possibly topological in nature, which limit the minimum interinitiation interval in E. coli.  相似文献   

8.
Novobiocin, an inhibitor of DNA gyrase implicated in bacterial and likely mammalian, chromosome replication, inhibited the initiation, but not the elongation of human adenovirus DNA replicative synthesis. The inhibition was partially reversible, even in the presence of protein synthesis inhibitor. Novobiocin inhibited also the encapsidation of viral DNA, and this effect was independent of the block in DNA replication. It was suggested that novobiocin acted on two different functions, one involved in viral DNA replication initiation, the other in DNA encapsidation.  相似文献   

9.
The action of novobiocin and coumermycin (two coumarins which interact with the gyrB subunit of eubacterial DNA gyrase) and ciprofloxacin (a fluoroquinolone which interacts with the gyrA subunit of DNA gyrase) was tested on several archaebacteria, including five methanogens, two halobacteria, and a thermoacidophile. Most strains were sensitive to doses of coumarins (0.02 to 10 micrograms/ml) which specifically inhibit DNA gyrase in eubacteria. Ciprofloxacin inhibited growth of the haloalkaliphilic strain Natronobacterium gregoryi and of the methanogen Methanosarcina barkeri. In addition, ciprofloxacin partly relieved the sensitivity to coumarins (and vice versa). Novobiocin inhibited DNA replication in Halobacterium halobium rapidly and specifically. Topological analysis has shown that the 1.7-kilobase plasmid from Halobacterium sp. strain GRB is negatively supercoiled; this plasmid was relaxed after novobiocin treatment. These results support the existence in archaebacteria of a coumarin and quinolone target related to eubacterial DNA gyrase.  相似文献   

10.
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

11.
The antibiotic novobiocin is shown to alter the sedimentation properties of human cellular DNA in alkaline sucrose. This alteration is at least partially due to increased DNA-protein binding in the cell in the presence of novobiocin. Pyrimidine dimer analysis and repair replication studies support previous reports that novobiocin inhibits repair of UV damage in human cells but we find this block to be shortlived. It is also shown that novobiocin is ineffective at blocking "long-patch" repair induced by methyl methanesulfonate as measured both by CsCl density centrifugation and the ara-C inhibition technique. However, the accumulation of breaks in MMS-treated cellular DNA in the presence of novobiocin suggests that some "short-patch" alkylation repair may be inhibited by the antibiotic. These findings are discussed in light of the proposal that novobiocin may inhibit a DNA gyrase-like activity in human as in bacterial cells.  相似文献   

12.
Using isolated rat liver mitochondria, which have previously been shown to carry out true replicative DNA synthesis, we have obtained results which are in accord with the presence and functioning of a DNA gyrase in this organelle. The effects of the Escherichia coli DNA gyrase inhibitors, novobiocin, coumermycin, nalidixic acid and oxolinic acid, upon mtDNA replication suggest the involvement of the putative mitochondrial enzyme in various aspects of this process. First, the preferential inhibition of [3H]dATP incorporation into highly supercoiled DNA together with the appearance of labeled, relaxed DNA are consistent with the involvement of a gyrase in the process of generating negative supercoils in mature mtDNA. Second, the overall depression of incorporation of labeled dATP into mtDNA, including the reduction of radioactivity incorporated into replicative intermediates, suggests a 'swivelase' role for the putative gyrase, and this hypothesis is further supported by results obtained on sucrose gradient centrifugation of heat-denatured, D-loop mtDNA. Here, the synthesis of the completed clean circles is inhibited while 9 S initiator strand synthesis is not, suggesting that chain elongation is blocked by the gyrase inhibitors.  相似文献   

13.
Adenovirus types 2 and 5 DNA synthesized in vivo and in vitro in the presence of aphidicolin were studied. Inhibition of adenoviral DNA synthesis by aphidicolin was only 70% even at a concentration of 30 micrograms/ml of aphidicolin, at which the cellular DNA synthesis was completely inhibited. When initiation of the viral DNA synthesis was synchronized with hydroxyurea and labeled with [3H]thymidine for 60 min, the viral DNA synthesized in the presence of 30 micrograms/ml of aphidicolin was not of full length (35 kb) but small (approximately 12 kb) by analysis of alkaline sucrose density gradient centrifugation. When initiation of the viral DNA synthesis was not synchronized, the viral DNAs ranging from full size to 12 kb were synthesized in the presence of aphidicolin, indicating that the nascent DNAs longer than about 12 kb can continue to elongate in the presence of aphidicolin. This 12 kb DNA was not derived from the degradation products of newly synthesized full size adenoviral DNA. The viral DNA synthesis was restored and the full size of adenoviral DNA was attained within 15 min following removal of aphidicolin. About 20% of the entire viral genome length from the 5'-end was not inhibited by aphidicolin, while the synthesis of interior fragments of the adenoviral DNA was markedly inhibited by aphidicolin, judging from the electrophoretic pattern on neutral agarose gel after digestion of DNA with Hind III. These results indicate that aphidicolin inhibits adenoviral DNA replication at the internal region located approximately 20-30% from both terminals.  相似文献   

14.
The effect of antitumor antibiotic neocarzinostatin on DNA replication in HeLa cells was studied by pulse-labeling of DNA with [3H]thymidine and sedimentation analysis of the DNA with alkaline sucrose gradients. The drug, which produced DNA damage, primarily inhibited the replicon initiation in the cells at low doses (less than or equal to 0.1 microgram/ml), and at high doses (greater than or equal to 0.5 microgram/ml) inhibited the DNA chain elongation. An analysis of the number of single-strand breaks of parental DNA, induced by neocarzinostatin, indicated that inhibition of the initiation occurred with introduction of single-strand breaks of less than 1.5 . 10(4)/cell, while inhibition of the elongation occurred with introduction of single-strand breaks of more than 7.5 . 10(4)/cell. Assuming that the relative molecular mass of DNA/HeLa cell was about 10(13) Da, the target size of DNA for inhibition of replicon initiation was calculated to be about 10(9) Da, such being close to an average size of loop DNA in the cell and for inhibition of chain elongation, 1-2 . 10(8) Da which was of the same order of magnitude as the size of replicons. Recovery of inhibited DNA replication by neocarzinostatin occurred during post-incubation of the cells and seemed to correlate with the degree of rejoining of the single-strand breaks of parental DNA. Caffeine and theophylline enhanced the recovery of the inhibited replicon initiation, but did not aid in the repair of the breaks in parental DNA.  相似文献   

15.
E Boye  W Khnlein    K Skarstad 《Nucleic acids research》1984,12(21):8281-8291
DNA strand breaks induced by Neocarzinostatin in Escherichia coli cells have been characterized. Radioactively labeled phage lambda DNA was introduced into lysogenic host bacteria allowing the phage DNA to circularize into superhelical molecules. After drug treatment DNA single- and double-strand breaks were measured independently after neutral sucrose gradient sedimentation. The presence of alkali-labile lesions was measured in parallel in alkaline sucrose gradients. The cell envelope provided an efficient protection towards the drug, since no strand breaks were detected unless the cells were made permeable with toluene or with hypotonic Tris buffer. In permeable cells, no double strand breaks could be detected, even at high NCS concentration (100 micrograms/ml). Induction of single-strand breaks leveled off after 15 min at 20 degrees C in the presence of 2 mM mercaptoethanol. Exposure to 0.3N NaOH doubled the number of strand breaks. No enzymatic repair of the breaks could be observed.  相似文献   

16.
Using isolated rat liver mitochondria, which have previously been shown to carry out true replicative DNA synthesis, we have obtained results which are in accord with the presence and functioning of a DNA gyrase in this organelle. The effects of the Escherichia coli DNA gyrase inhibitors, novobiocin, coumermycin, nalidixic acid and oxolinic acid, upon mtDNA replication suggest the involvement of the putative mitochondrial enzyme in various aspects of this process. First, the preferential inhibition of [3H]dATP incorporation into highly supercoiled DNA together with the appearance of labeled, relaxed DNA are consistent with the involvement of a gyrase in the process of generating negative supercoils in mature mtDNA. Second, the overall depression of incorporation of labeled dATP into mtDNA, including the reduction of radioactivity incorporated into replicative intermediates, suggests a ‘swivelase’ role for the putative gyrase, and this hypothesis is further supported by results obtained on sucrose gradient centrifugation of heat-denatured, d-loop mtDNA. Here, the synthesis of the completed clean circles is inhibited while 9 S initiator strand synthesis is not, suggesting that chain elongation is blocked by the gyrase inhibitors.  相似文献   

17.
DNA-damaging activity of patulin in Escherichia coli   总被引:1,自引:0,他引:1  
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

18.
We reported that DNA replication initiates from the region containing an autonomously replicating sequence from Saccharomyces cerevisiae when negatively supercoiled plasmid DNA is incubated with the proteins required for simian virus 40 DNA replication (Y. Ishimi and K. Matsumoto, Proc. Natl. Acad. Sci. USA 90:5399-5403, 1993). In this study, the DNAs containing initiation zones from mammalian cells were replicated in this model system. When negatively supercoiled DNA containing an initiation zone (2 kb) upstream of the human c-myc gene was incubated with simian virus 40 T antigen as a DNA helicase, HSSB (also called replication protein A), and DNA polymerase alpha-primase complex isolated from HeLa cells, DNA replication was specifically initiated from the center of the initiation zone, which was elongated bidirectionally in the presence of a DNA swivelase. Without HSSB, the level of DNA synthesis was significantly reduced and the localized initiation could not be detected, indicating that HSSB plays an essential role in the initiation of DNA replication. The digestion of negatively supercoiled template DNA with a single-strand-specific nuclease revealed that HSSB stimulated DNA unwinding in the center of the initiation zone where the DNA duplex is relatively unstable. In contrast, DNA replication started from a broad region of an initiation zone downstream of the dihydrofolate reductase gene from chinese hamster ovary cells, but the center of the region was mapped near the origin of bidirectional DNA replication. These results suggested that this system mimics a fundamental process of initiation of eukaryotic DNA replication. The mechanism of initiation is discussed.  相似文献   

19.
F Reusser 《Biochemistry》1977,16(15):3406-3412
The two peptide-like antibiotics ficellomycin and feldamycin impair semiconservative DNA replication but not DNA repair synthesis in bacteria. Specifically both antibiotics cause the accumulation of a 34S DNA species in toluenized Escherichia coli cells which lacks the capability of being integrated into larger DNA pieces and eventually the complete bacterial chromosome. Novobiocin, a known inhibitor of replicative DNA synthesis, was investigated for comparative purposes. The action of this latter antibiotic differs from the ones exerted by ficellomycin and feldamycin in the novobiocin appears to block an event associated with the initiation of Okazaki fragments. The fact that novobiocin impairs DNA gyrase suggests that this enzyme plays an essential role during the initiation of Okazaki pieces.  相似文献   

20.
A procedure has been developed for transforming protoplasts of the novobiocin producing strain Streptomyces niveus at high frequency. This required the isolation of strains LH13 and LH20 defective in DNA restriction from the wild type (ATCC 19793) which is transformed at very low frequencies. The LH13 and LH20 derivatives were obtained by curing pIJ702 DNA from the few S. niveus transformed protoplasts obtained by transformation of the wild type with high concentrations of pIJ702 DNA. Protoplasts of S. niveus strains LH13 and LH20 produced about 10(6) transformants/micrograms DNA with modified pIJ702 DNA derived by replication in S. niveus. Unmodified DNA (derived from replication in S: lividans) from a series of pIJ101, SCP2 and pSN2-based derivatives, gave transformation frequencies in the range of 10(2)-10(3) transformants/micrograms DNA. Optimal conditions for the formation and transformation of S. niveus protoplasts are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号