首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although the mechanism of chronic myeloid leukemia (CML) initiation through BCR/ABL oncogene has been well characterized, CML cell differentiation into erythroid lineage cells remains poorly understood. Using CRISPR-Cas9 screening, we identify Chromobox 8 (CBX8) as a negative regulator of K562 cell differentiation into erythrocytes. CBX8 is degraded via proteasomal pathway during K562 cell differentiation, which activates the expression of erythroid differentiation-related genes that are repressed by CBX8 in the complex of PRC1. During the differentiation process, the serine/threonine-protein kinase PIM1 phosphorylates serine 196 on CBX8, which contributes to CBX8 reduction. When CD235A expression levels are analyzed, the result reveals that the knockdown of PIM1 inhibits K562 cell differentiation. We also identify TRIM28 as another interaction partner of CBX8 by proteomic analysis. Intriguingly, TRIM28 maintains protein stability of CBX8 and TRIM28 loss significantly induces proteasomal degradation of CBX8, resulting in an acceleration of erythroid differentiation. Here, we demonstrate the involvement of the CBX8-TRIM28 axis during CML cell differentiation, suggesting that CBX8 and TRIM28 are promising novel targets for CML research.  相似文献   

3.
4.
细胞周期的测量是细胞增殖动力学的研究基础。通过添加30μmol·L-1氯化高铁血红素(Hemin)诱导人慢性髓系白血病K562细胞红系分化,利用5-溴脱氧尿嘧啶核苷(BrdU)与7-AAD双染的方法检测Hemin诱导的K562红系分化细胞对细胞周期各期比例的影响,未诱导的K562细胞周期各期比例作为对照,检测发现Hemin诱导的K562红系分化细胞对其细胞周期相对值无明显影响。应用BrdU间隔染色结合流式细胞术的方法,通过分析BrdU间隔染色后BrdU阳性细胞群的动态变化规律,从而推算出K562红系分化细胞的倍增时间及细胞周期各期时长。根据测量结果发现,未诱导的K562细胞总倍增时间约为20 h,与通过生长曲线公式法计算倍增时间的结果相符,Hemin诱导的K562细胞的细胞周期倍增时长约为23 h。Hemin诱导的K562红系分化细胞较未诱导的K562细胞倍增时间与各期时长无明显差异。因此,Hemin诱导K562细胞红系分化对其细胞周期绝对值及相对值均无明显影响。  相似文献   

5.
6.
Regulation of erythroid differentiation by miR-376a and its targets   总被引:1,自引:0,他引:1  
Wang F  Yu J  Yang GH  Wang XS  Zhang JW 《Cell research》2011,21(8):1196-1209
Lineage differentiation is a continuous process during which fated progenitor cells execute specific programs to produce mature counterparts. This lineage-restricted pathway can be controlled by particular regulators, which are usually exclusively expressed in certain cell types or at specific differentiation stages. Here we report that miR-376a participates in the regulation of the early stages of human erythropoiesis by targeting cyclin-dependent kinase 2 (CDK2) and Argonaute 2 (Ago2). Among various human leukemia cell lines, miR-376a was only detected in K562 cells which originated from a progenitor common to the erythroid and megakaryotic lineages. Enforced expression of miR-376a or silencing of CDK2 and Ago2 by RNAi inhibits erythroid differentiation of K562 cells. Hematopoietic progenitor cells transduced with miR-376a showed a significant reduction of their erythroid clonogenic capacity. MiR-376a is relatively abundant in erythroid progenitor cells, where it reduces expression of CDK2 and maintains a low level of differentiation due to cell cycle arrest and decreased cell growth. Following erythroid induction, miR-376a is significantly down-regulated and CDK2 is released from miR-376a inhibition, thereby facilitating the escape of progenitor cells from the quiescent state into erythroid differentiation. Moreover, our results establish a functional link between miR-376a and Ago2, a key factor in miRNA biogenesis and silencing pathways with novel roles in human hematopoiesis.  相似文献   

7.
siRNA沉默socs3对红系发育的影响   总被引:1,自引:1,他引:0  
为了研究细胞因子信号转导分子3(suppressor of cytokine signals-3,SOCS-3)对造血发育的影响,构建了SOCS-3慢病毒siRNA干涉载体,并转染人红白血病细胞株K562.根据绿色荧光蛋白的表达进行流式分选后,获得了高表达慢病毒干涉载体的细胞.实时荧光定量PCR和Western-blot检测了转染细胞中SOCS-3基因的干涉效率,结果显示,与对照组相比,siRNA干涉后K562细胞SOCS-3基因的表达量仅为其相对表达量的22.1%,干涉效率77.9%;Western-blot结果显示,SOCS-3在蛋白质水平表达也明显受抑制.进一步对SOCS-3基因沉默后的K562细胞进行了诱导分化,并采用联苯胺染色法检测K562细胞向红系分化比例变化,免疫荧光染色检测细胞表面抗原的变化,RT-PCR检测造血相关基因的变化.结果发现,SOCS-3沉默后K562细胞向红系的发育能力显著提高.研究结果证明,SOCS-3在造血发育中有重要调控作用,而对其表达进行干涉或沉默将在规模化的红细胞诱导研究中发挥重要作用.  相似文献   

8.
Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches.  相似文献   

9.
10.
K562 cells were stably transfected with a plasmid vector constitutively expressing a full-length human c-myb gene. Parental cells possess the dual potential of inducibility of cellular differentiation along two lineages, i.e., erythroid and megakaryocytic. The resulting lineage is dependent on the inducing agent, with a number of compounds being competent to various degrees for inducing erythroid differentiation, while the tumor promoter tetradecanoyl phorbol acetate (TPA) induces a macrophage-like morphology with enhanced expression of proteins associated with megakaryocytes. Exogeneous expression of c-myb in transfected cell lines abrogated erythroid differentiation induced by cadaverine or cytosine arabinoside as assessed by hemoglobin production. However, TPA-induced megakaryocytic differentiation was left intact, as assessed by cell morphology, cytochemical staining, and the expression of the megakaryocytic antigens. These results indicate that c-Myb and protein kinase C play important roles in cellular differentiation of K562 cells and suggest that agents which directly modulate protein kinase C can induce differentiation in spite of constitutively high levels of c-Myb.  相似文献   

11.
12.
13.
以氯高铁血红素 (hemin)诱导K5 6 2分化作为体外红细胞分化模型 ,结合cDNA大规模测序、生物信息学分析、基因芯片杂交和NorthernBlot分析等技术 ,筛选红细胞分化相关的新基因 .首先利用大规模测序技术从人胚肾cDNA文库中随机挑选克隆测得 192个EST(expressedsequencetags)片段 ,经在线生物信息学分析 ,得到 79个代表新基因的未知EST片段 ,并在NCBI(NationalCenterofBiotechnologyInformation)dbEST库中登录 .利用 79个ESTcDNA片段制备了基因芯片 .提取分化前后的K5 6 2细胞的mRNA作为荧光标记反转录的模板 ,反转录后的探针用于DNA芯片杂交 .分析杂交后的结果 ,得到了 2个差异表达较明显的基因 ,GenBank登录号分别为AF147772 (187bp)和AF4 776 2(6 30bp) ,并分别命名为EDRG1和EDRG2 (erythroiddifferentiationrelatedgene 1and 2 ) ,相似性检索表明它们属全新基因 ,基因组草图测序数据库检索表明了两个基因的染色体定位 .随后的Northern印迹用于验证了在分化前后的K5 6 2细胞中差异表达 .提示这两个基因参与了红细胞分化过程 .RT PCR检测了EDRG1和EDRG2在人胚胎多组织中的表达 .结果提示 ,EDRG1可能与多种胚组织的正常发育相关 ,尤其在胚脑中高丰度表达 ,而EDRG2则可能参与了胚心和胚肾的组织生成 .生物  相似文献   

14.
Differentiation induction is currently considered as an alternative strategy for treating chronic myelogenous leukemia (CML). Our previous work has demonstrated that Sprouty-related EVH1 domainprotein2 (Spred2) was involved in imatinib mediated cytotoxicity in CML cells. However, its roles in growth and lineage differentiation of CML cells remain unknown. In this study, we found that CML CD34+ cells expressed lower level of Spred2 compared with normal hematopoietic progenitor cells, and adenovirus mediated restoration of Spred2 promoted the erythroid differentiation of CML cells. Imatinib could induce Spred2 expression and enhance erythroid differentiation in K562 cells. However, the imatinib induced erythroid differentiation could be blocked by Spred2 silence using lentiviral vector PLKO.1-shSpred2. Spred2 interference activated phosphorylated-ERK (p-ERK) and inhibited erythroid differentiation, while ERK inhibitor, PD98059, could restore the erythroid differentiation, suggesting Spred2 regulated the erythroid differentiation partly through ERK signaling. Furthermore, Spred2 interference partly restored p-ERK level leading to inhibition of erythroid differentiation in imatinib treated K562 cells. In conclusion, Spred2 was involved in erythroid differentiation of CML cells and participated in imatinib induced erythroid differentiation partly through ERK signaling.  相似文献   

15.
16.
The constitutively active Bcr‐Abl tyrosine kinase plays a crucial role in chronic myelogenous leukemia (CML) pathogenesis. The Bcr‐Abl protein induces the upregulation of proto‐oncogene c‐Jun, which is involved in Bcr‐Abl transforming activity in Bcr‐Abl positive cells. Recent studies reported that c‐Jun inhibited hemoglobin synthesis in human CML cell line K562. However, c‐Jun also plays a critical role in cell proliferation and apoptosis. In this study, we investigated the physiological roles of c‐Jun in cell proliferation, apoptosis and erythroid differentiation of K562 cells. Firstly, we generated K562 cell lines stably overexpressing c‐Jun. These clones have the same proliferation rate as the parental cell line in general culture medium. Endogenous c‐Jun expression was analyzed to determine the effective concentration of STI571 for inhibiting Bcr‐Abl signaling. Western blots show that STI571 inhibited c‐Jun expression in a dose‐dependent manner, reaching a maximum inhibition at 1 µM. STI571 could inhibit c‐Jun expression in K562 cells, but not in c‐Jun‐overexpression cells. c‐Jun did not alter growth inhibition and apoptotic induction by STI571 treatment, but inhibited STI571‐induced erythroid differentiation. Moreover, c‐Jun did not alter growth inhibition and apoptotic induction by histone deacetylase (HDAC) inhibitors (apicidin, sodium butyrate, and MS275) treatment, but inhibited HDAC inhibitors‐induced erythroid differentiation. These results suggest that c‐Jun may modulate anticancer drugs‐induced cell differentiation but not growth inhibition and apoptosis in CML cells. J. Cell. Physiol. 218: 568–574, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
18.
Mouse myeloid leukemia cells, M1, were induced to differentiate into phagocytes by treatment with ascofuranone (AF). AF also induced differentiation of human promyelocytic leukemia HL60 cells and human erythroid leukemia K562 cells into granulocytes and erythrocytes, as detected by nitroblue tetrazolium reducing activity and benzidine staining, respectively.

The antibiotic enhanced acetate incorporation of K562 cells. The increase was not observed with the cells of HL60 and two human B lymphoma lines, Daudi and Raji. The increase was diminished by the addition of a glycolysis inhibitor, deoxyglucose. Inhibitors of respiration, antimycin and sodium azide, also enhanced acetate incorporation of K562 cells specifically, which was diminished by the addition of deoxyglucose. Furthermore, antimycin induced differentiation of K562 and HL60 cells. These results suggest a possible relationship between cell differentiation and inhibition of respiration.  相似文献   

19.
20.
Using the electrophoretic mobility shift assay and the footprinting technique, we studied the binding of nuclear proteins from erythroid and non erythroid human cells to the promoter region of the human gamma-globin gene. Two regions (A and B) of the promoter are bound by proteins present in uninduced K562 cells, but not in induced K562 cells nor in fetal liver erythroblasts; a protein binding to region A is also present in a variety of lymphoid and myeloid cells. Region B is centered on an octamer sequence identical to that present in immunoglobulin promoter and enhancers and other eukaryotic promoters; a B region binding protein common to K562 and other cells efficiently binds the octamer containing region of the histone H2B gene, while different B region proteins are more specific for uninduced K562 cells and the gamma-globin octamer containing fragment. The possible role of these nuclear proteins in gamma-globin gene regulation and/or cell differentiation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号