首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hobo elements are a family of transposable elements found inDrosophila melanogaster and its three sibling species:D. simulans, D. mauritiana andD. sechellia. Studies inD. melanogaster have shown thathobo may be mobilized, and that the genetic effects of such mobilizations included the general features of hybrid dysgenesis: mutations, chromosomal rearrangements and gonadal dysgenis in F1 individuals. At the evolutionary level somehobo-hybridizing sequences have also been found in the other members of themelanogaster subgroup and in many members of the relatedmontium subgroup. Surveys of older collected strains ofD. melanogaster suggest that completehobo elements were absent prior to 50 years ago and that they have recently been introduced into this species by horizontal transfer. In this paper we review our findings and those of others, in order to precisely describe the geographical distribution and the evolutionary history ofhobo in theD. melanogaster complex. Studies of the DNA sequences reveal a different level of divergence between the groupD. melanogaster, D. simulans andD. mauritiana and the fourth speciesD. sechellia. The hypothesis of multiple transfers in the recent past into theD. melanogaster complex from a common outside source is discussed.  相似文献   

2.
Summary The abundance of the transposable elementmariner differs dramatically in the genomes of the closely related speciesDrosophila simulans, D. mauritiana, D. sechellia, andD. melanogaster. Natural populations ofD. simulans andD. mauritiana have 1–10 and 20–30 copies per diploid genome, respectively, and the insertion sites are polymorphic. The element has not been found inD. melanogaster. In this paper we show thatD. sechellia, a species endemic to the Seychelles Islands, contains only twomariner elements that are at fixed sites in the genome. One element, inserted in chromosome 2R at 51A1–2, contains three deletions and is missing much of the 3 end. The other element, inserted in chromosome 3L at 64A10–11, is the full length of 1286 bp. Although the sequence of the full-length element is polymorphic in populations ofD. sechellia, at least some of the sequences are closely related to elements fromD. simulans andD. mauritiana that are known to be active. However, judging from the progeny of crosses betweenD. sechellia andD. simulans, the biological activity of the full-lengthD. sechellia element appears to be low, either because of the nucleotide sequence of the element or because of its position in the genome, or both.  相似文献   

3.
Summary We have analyzed 18 kb of DNA in and upstream of thedefective chorion-1 (dec-1) locus of the eight known species of themelanogaster species subgroup ofDrosophila. The restriction maps ofD. simulans, D. mauritiana, D. sechellia, D. erecta, andD. orena are shown to have basically the restriction map ofD. melanogaster, whereas the maps ofD. teissieri andD. yakuba were more difficult to align. However, the basic amount of DNA and sequence arrangement appear to have been conserved in these species. A small deletion of varying length (65–200 bp) is found in a repeated sequence of the central transcribed region ofD. melanogaster, D. simulans, andD. erecta. Restriction site mapping indicated that thedec-1 gene is highly conserved in themelanogaster species subgroup. However, sequence comparison revealed that the amount of nucleotide and amino acid substitution in the repeated region is much larger than in the 5 translated region. The 5 flanking region showed noticeable restriction site polymorphisms between species. Based on calculations from the restriction maps a dendrogram was derived that supports earlier published phylogenetic relationships within themelanogaster species subgroup except that theerecta-orena pair is placed closer to themelanogaster complex than toD. teissieri andD. yakuba.  相似文献   

4.
We examined the genomic occurrence of the transposable elementpogo in over 120 strains ofDrosophila melanogaster, from around the world and from different eras. All had multiple copies of a 2.1 kilobase (kb)pogo element, and multiple copies of several size classes between 1.0 and 1.8 kb. There were differences between strains in intensities or presences of deletion-derivative size classes, suggesting current or recent mobility in the species. We were unable to find anypogo-hybridization in eight other species in the genus, in three subgenera, or in the relatedScaptomyza pallida. Thepogo element may be a ‘middle-aged’ element in the genome ofD. melanogaster, having entered the species since its divergence from its sibling species, but long before theP andhobo elements.  相似文献   

5.
Crosses betweenDrosophila melanogaster females andD. simulans males produce viable hybrid females, while males are lethal. These males are rescued if they carry theD. simulans Lhr gene. This paper reports that females of the wild-typeD. melanogaster population Staket do not produce viable hybrid males when crossed withD. simulans Lhr males, a phenomenon which we designate as the Staket phenotype. The agent responsible for this phenomenon was found to be the StaketX chromosome (X mel ,Stk). Analysis of the Staket phenotype showed that it is suppressed by extra copies ofD. melanogaster rDNA genes and that theX mel ,Stk chromosome manifests a weak bobbed phenotype inD. melanogaster X mel ,Stk/0 males. The numbers of functional rDNA genes inX mel ,Stk andX mel ,y w (control) chromosomes were found not to differ significantly. Thus a reduction in rDNA gene number cannot account for the weak bobbedX mel ,Stk phenotype let alone the Staket phenotype. The rRNA precursor molecules transcribed from theX mel ,Stk rDNA genes seem to be correctly processed in both intraspecific (melanogaster) and interspecific (melanogaster-simulans) conditions. It is therefore suggested that theX mel ,Stk rDNA genes are inefficiently transcribed in themelanogaster-simulans hybrids.  相似文献   

6.
Summary Characterization of sequences homologous to theDrosophila melanogaster gypsy transposable element was carried out inDrosophila subobscura (gypsyDS). They were found to be widely distributed among natural populations of this species. From Southern blot and in situ analyses, these sequences appear to be mobile in this species.GypsyDS sequences are located in both euchromatic and heterochromatic regions. A completegypsyDS sequence was isolated from aD. subobscura genomic library, and a 1.3-kb fragment which aligns with the ORF2 of theD. melanogaster gypsy element was sequenced. Comparisons of this sequence in three species (D. subobscura, D. melanogaster, and D. virilis) indicate that there is greater similarity between theD. subobscura-D. virilis sequences than betweenD. subobscura andD. melanogaster. Molecular divergence ofgypsy sequences betweenD. virilis andD. subobscura is estimated at 16 MY, whereas the most likely divergence time of these two species is more than 60 MY. These data strongly suggest thatgypsy sequences have been horizontally transferred between these species.Offprint requests to: T.M. Alberola  相似文献   

7.
Summary The transposable element mariner occurs widely in themelanogaster species group ofDrosophila. However, in drosophilids outside of themelanogaster species group, sequences showing strong DNA hybridization with mariner are found only in the genusZaprionus. the mariner sequence obtained fromZaprionus tuberculatus is 97% identical with that fromDrosophila mauritiana, a member of themelanogaster species subgroup, whereas a mariner sequence isolated fromDrosophila tsacasi is only 92% identical with that fromD. mauritiana. BecauseD. tsacasi is much more closely related toD. mauritiana than isZaprionus, the presence of mariner inZaprionus may result from horizontal transfer. In order to confirm lack of a close phylogenetic relationship between the genusZaprionus and themelanogaster species group, we compared the alcohol dehydrogenase (Adh) sequences among these species. The results show that the coding region of Adh is only 82% identical betweenZ. tuberculatus andD. mauritiana, as compared with 90% identical betweenD. tsacasi andD. mauritiana. Furthermore, the mariner gene phylogeny obtained by maximum likelihood and maximum parsimony analyses is discordant with the species phylogeny estimated by using the Adh genes. The only inconsistency in the mariner gene phylogeny is in the placement of theZaprionus mariner sequence, which clusters with mariner fromDrosophila teissieri andDrosophila yakuba in themelanogaster species subgroup. These results strongly suggest horizontal transfer.  相似文献   

8.
Summary Clones carrying thewhite andtopaz eye color genes have been isolated from genomic DNA libraries of the blowflyLucilia cuprina using cloned DNA from the homologouswhite andscarlet genes. respectively, ofDrosophila melanogaster as probes. On the basis of hybridization studies using adjacent restriction fragments, homologous fragments were found to be colinear between the genes from the two species. The nucleotide sequence of a short region of thewhite gene ofL. cuprina has been determined, and the homology to the corresponding region ofD. melanogaster is 72%; at the derived amino acid level the homology is greater (84%) due to a marked difference in codon usage between the species. A major difference in genome organization between the two species is that whereas the DNA encompassing theD. melanogaster genes is free of repeated sequences. that encompassing theirL. cuprina counterparts contains substantial amounts of repeated sequences. This suggests that the genome ofL. cuprina is organized on the short period interspersion pattern. Repeated sequence DNA elements, which appear generally to be short (less than 1 kb) and which vary in repetitive frequency in the genome from greater than 104 copies to less than 102 copies, are found in at least two different locations in the clones carrying these genes. One type of repeat structure, found by sequencing, consists of tandemly repeating short sequences. Restriction site and restriction fragment length polymorphisms involving both thewhite andtopaz gene regions are found within and between populations ofL. cuprina.  相似文献   

9.
Summary Because natural populations ofDrosophila melanogaster are polymorphic for different allozymes of alcohol dehydrogenase (ADH) and becauseD. melanogaster is more tolerant to the toxic effects of ethanol than its sibling speciesD. simulans, information regarding the sensitivities of the different forms of ADH to the products of ethanol degradation are of ecological importance. ADH-F, ADH-S, ADH-71k ofD. melanogaster and the ADH ofD. simulans were inhibited by NADH, but the inhibition was relieved by NAD+. The order of sensitivity of NADH was ADH-F<ADH-71k, ADH-S<ADH-simulans with ADH-F being about four times less sensitive than theD. melanogaster enzymes and 12 times less sensitive than theD. simulans enzyme. Acetaldehyde inhibited the ethanolto-acetaldehyde activity of the ADHs, but at low acetaldehyde concentrations ethanol and NAD+ reduced the inhibition. ADH-71k and ADH-F were more subject to the inhibitory action of acetaldehyde than ADH-S and ADH-simulans, with ADH-71k being seven times more sensitive than ADH-S. The pattern of product inhibition of ADH-71k suggests a rapid equilibrium random mechanism for ethanol oxidation. Thus, although the ADH variants only differ by a few amino acids, these differences exert a far larger impact on their intrinsic properties than previously thought. How differences in product inhibition may be of significance in the evolution of the ADHs is discussed.  相似文献   

10.
Summary Approximately 30–40% ofDrosophila virilis DNA complementary to clonedDrosophila histone genes is reduced to 3.4-kilobase-pair (kbp) segments by Bgl I or Bgl II digestion. The core histone genes of a 3.4-kbp Bgl II segment cloned in the plasmid pDv3/3.4 have the same order as theD. melanogaster core histone genes in the plasmid cDm500: . Nonetheless, pDv3/3.4 and cDm500 have different histone gene configurations: In pDv3/3.4, the region between the H2B and H3 genes contains 0.35 kbp and cannot encode histone H1; in cDm500, the region contains 2.0 kbp and encodes histone H1. The lack of an H1 gene between the H2B and H3 genes in 30–40% ofD. virilis histone gene clusters suggests that changes in histone gene arrays have occurred during the evolution ofDrosophila. The ancestors of modernDrosophila may have possessed multiple varieties of histone gene clusters, which were subsequently lost differentially in thevirilis andmelanogaster lineages. Alternatively, they may have possessed a single variety, which was rearranged during evolution. The H1 genes ofD. virilis andD. melanogaster did not cross-hybridize in vitro under conditions that maintain stable duplexes between DNAs that are 75% homologous. Consequently,D. virilis H1 genes could not be visualized by hybridization to an H1-specific probe and thus remain unidentified. Our observations suggest that the coding segments in the H1 genes ofD. virilis andD. melanogaster are >25% divergent. Our estimate of sequence divergence in the H1 genes ofD. virilis andD. melanogaster seems high until one considers that the coding sequences of cloned H1 genes from the closely related speciesD. melanogaster andD. simulans are 5% divergent.  相似文献   

11.
Summary The P-element-mediated gene transfer system was used to introduceDrosophila teissieri 5S genes into theDrosophila melanogaster genome. Eight transformedD. melanogaster strains that carryD. teissieri 5S mini-clusters consisting of 9–21 adjacent 5S units were characterized. No genetic exchanges betweenD. melanogaster andD. teissieri 5S clusters were detected over a 2-year survey of the eight strains. The occurrence of small rearrangements within theD. melanogaster 5S cluster was demonstrated in one of the transformed strains.  相似文献   

12.
Esterase 6 (Est-6/EST6) is the major β-carboxylesterase inD. melanogaster and its siblingsD. simulans andD. mauritiana. It is expressed in several tissues but its major site of expression is the sperm ejaculatory duct of the adult male. Although EST6 activity affects reproductive fitness, there are high levels of electrophoretic and activity polymorphism, at least withinD. melanogaster andD. simulans. Here we present the nucleotide sequences of anEst-6 allele and its flanking regions from each ofD. simulans andD. mauritiana and compare them with the publishedD. melanogaster sequences. As might be expected, replacement sites are significantly less divergent than exon silent sites in all comparisons, suggesting that selection is acting to maintain EST6 structure and function among the three species. Nevertheless, the ratio of the levels of replacement to silent site divergence is still much higher forEst-6 than for seven of ten other genes (including both isozyme-coding loci) for which comparable data have been published for these species. This is consistent with the high levels of EST6 electrophoretic polymorphism withinD. melanogaster andD. simulans and implies that selective constraints against amino acid change are relatively weak for EST6. By contrast, comparisons involving promotor sequences show that the level of divergence in the first 350bp 5′ of the gene is significantly lower than those for four of the six other loci for which comparable data have been published for these species. In particular, there are two perfectly conserved stretches (−1 to −158bp and −219 to −334bp) each over 100bp long included in this 350bp region. Thus the data suggest a relatively low level of selective constraint on the amino acid sequence of EST6 but a relatively high level of constraint on sequences affecting aspects of its expression.  相似文献   

13.
We surveyed genetic polymorphism by two-dimensional gel electrophoresis of male reproductive tract proteins in 20 isofemale lines each ofDrosophila melanogaster andDrosophila simulans. After classifying 244 such proteins ofDrosophila melanogaster and 271 ofDrosophila simulans by their distribution between testes and accessory glands within the reproductive tract, significant correlations were found between genetic polymorphism and tissue distribution. In both species, gland-specific proteins were significantly more polymorphic than testis-specific proteins, as well as those found in both testes and glands. Simultaneously, inDrosophila simulans, proteins found in roughly equivalent relative abundance in both testes and glands were significantly less variable than gland-specific and testis-specific proteins, as well as those with a quantitative difference in relative abundance between testes and glands. These correlations may reflect general differences in variability between extracellular and intracellular proteins and between proteins with broad as opposed to tissue-specific distributions.We thank the Natural Sciences and Engineering Research Council of Canada for financial support (Grant A0235 to R.S.S.).  相似文献   

14.
Summary Recent sequencing of over 2300 nucleotides containing the alcohol dehydrogenase (Adh) locus in each of 11Drosophila melanogaster lines makes it possible to estimate the approximate age of the electrophoretic fast-slow polymorphism. Our estimates, based on various possible patterns of evolution, range from 610,000 to 3,500,000 years, with 1,000,000 years as a reasonable point estimate. Furthermore, comparison of these sequences with those of the homologous region ofD. simulans andD. mauritiana allows us to infer the pattern of evolutionary change of theD. melanogaster sequences. The integrity of the Adh-f electrophoretic alleles as a single lineage is supported by both unweighted pair-group method (UPGMA) and parsimony analyeses. However, considerable divergence among the Adh-s lines seems to have preceded the origin of the Adh-f allele. Comparisons of the sequences ofD. melanogaster genes with those ofD. simulans andD. mauritiana genes suggest that the split between the latter two species occurred more recently than the divergence of some of the present-day Adh-s genes inD. melanogaster. The phylogenetic analyses of theD. melanogaster sequences show that the fastslow distinction is not perfect, and suggest that intragenic recombination or gene conversion occurred in the evolution of this locus. We extended conventional phylogenetic analyses by using a statistical technique for detecting and characterizing recombination events. We show that the pattern of differentiation of DNA sequences inD. melanogaster is roughly compatible with the neutral theory of molecular evolution.  相似文献   

15.
Previous estimates of the size ofDrosophila melanogaster chromosome4 have indicated that it is 1% to 4% of the genome or 6 Mb. We have used pulsed field gel electrophoresis (PFGE) to separate megabase-sized molecules ofD. melanogaster chromosomal DNA. Southern blots of these gels were probed with DNA fragments from thecubitus interruptus andzfh-2 genes, which are located on chromosome4. They each identify the same-sized distinct band that migrates at approximately 5.2 Mb in DNA preparations from the Kc cell line. We interpret this band to be intact chromosome4. In DNA obtained from embryos of variousD. melanogaster wild-type strains, this chromosome band showed strain-specific size variation that ranged from 4.5 to 5.2 Mb. TheD. melanogaster chromosome4 probes also identified a single, 2.4 Mb band in embryonic DNA fromDrosophila simulans. We conclude thatD. simulans chromosome4 is substantially smaller than that ofD. melanogaster, presumably owing to diffirences in the amount of heterochromatic DNA sequences. Our simple DNA preparation from embryos and PFGE conditions should permit preparative isolation of chromosome4 DNA and will facilitate the molecular mapping of this chromosome.  相似文献   

16.
We have analysed the viability of cellular clones induced by mitotic recombination in Drosophila melanogaster/D. simulans hybrid females during larval growth. These clones contain a portion of either melanogaster or simulans genomes in homozygosity. Analysis has been carried out for the X and the second chromosomes, as well as for the 3L chromosome arm. Clones were not found in certain structures, and in others they appeared in a very low frequency. Only in abdominal tergites was a significant number of clones observed, although their frequency was lower than in melanogaster abdomens. The bigger the portion of the genome that is homozygous, the less viable is the recombinant melano-gaster/simulans hybrid clone. The few clones that appeared may represent cases in which mitotic recombination took place in distal chromosome intervals, so that the clones contained a small portion of either melanogaster or simulans chromosomes in homozygosity. Moreover, Lhr, a gene of D. simulans that suppresses the lethality of male and female melanogaster/simulans hybrids, does not suppress the lethality of the recombinant melanogaster/simulans clones. Thus, it appears that there is not just a single gene, but at least one per tested chromosome arm (and maybe more) that cause hybrid lethality. Therefore, the two species, D. melanogaster and D. simulans, have diverged to such a degree that the absence of part of the genome of one species cannot be substituted by the corresponding part of the genome of the other, probably due to the formation of co-adapted gene complexes in both species following their divergent evolution after speciation. The disruption of those coadapted gene complexes would cause the lethality of the recombinant hybrid clones.  相似文献   

17.
A clone-bank ofSac I restriction fragments was constructed from the chloroplast DNA (cpDNA) ofLobelia thuliniana E. B. Knox (Lobeliaceae). These cloned fragments and a set of 106 clones spanning the tobacco chloroplast genome were used as probes to determine the cpDNA restriction fragment arrangement forSac I and six other restriction enzymes (BamH I,EcoR V,Hind III,Nci I,Pst I, andXho I) and the chloroplast genome arrangement ofL. thuliniana relative to tobacco, which has been fully sequenced and is collinear with the hypothesized ancestral genome arrangement of angiosperms. The results confirm and refine our previous understanding of the chloroplast genome arrangement in the large single-copy region (LSC) and reveal (1) a roughly 11 kilobase (kb) expansion of the inverted repeat (IR) into the small single-copy region (SSC) and (2) apparent sequence divergence of the DNA segment inL. thuliniana that corresponds to ORF1901 in tobacco. The expansion of the IR into the SSC is present in all other examined members ofLobeliaceae, Cyphiaceae, andCampanulaceae, which indicates that the IR expansion was an early event in the cpDNA evolution of theCampanulales. The IR expansion into the SSC was not present inSphenoclea, which additionally supports exclusion of this genus from theCampanulaceae.  相似文献   

18.
Summary This report describes the distribution of P-element sequences among members of the closely relatedwillistoni andsaltans species groups of the subgenusSophophora. Gel-blotting analyses showed that many, but not all, species from each of these groups possess sequences with homology to the P transposable element ofDrosophila melanogaster, a sophophoran species belonging to themelanogaster species group. Furthermore, P-homologous fragments are present in lower numbers inwillistoni- andsaltans-group species than inD. melanogaster P strains, and, in some species of those two groups, exhibit species-characteristic hybridization patterns. On the basis of these results, it is proposed that P elements have had a long evolutionary history in thewillistoni andsaltans lineages.  相似文献   

19.
Lethal phases of the hybrids betweenDrosophila melanogaster and its sibling species,D. simulans are classified into three types: (1) embryonic lethality in hybrids carryingD. simulans cytoplasm andD. melanogaster X chromosome, (2) larval lethality in hybrids not carryingD. simulans X, and (3) temperature-sensitive pupal lethality in hybrids carryingD. simulans X. The same lethal phases are also observed when either of the two other sibling species,D. mauritiana orD. sechellia, is employed for hybridization withD. melanogaster. Here, we describe genetic analyses of each hybrid lethality, and demonstrate that these three types of lethality are independent phenomena. We then propose two models to interpret the mechanisms of each hybrid lethality. The first model is a modification of the conventional X/autosome imbalance hypothesis assuming a lethal gene and a suppressor gene are involved in the larval lethality, while the second model is for embryonic lethality assuming an interaction between a maternal-effect lethal gene and a suppressor gene.  相似文献   

20.
The effects of rearing and acclimation on the response of adultDrosophila to temperature were investigated in a gradient.D. melanogaster flies preferred a higher mean temperature and were distributed over a wider range of temperatures thanD. simulans flies. Acclimating adults at different temperatures for a week did not influence the response of either species. Adults reared at 28°C as immatures had a lower mean preference than those reared at cooler temperatures, suggesting that flies compensated for the effects of rearing conditions. Adults from tropical and temperate populations ofD. melanogaster andD. simulans did not differ in the mean temperature they preferred in a gradient, suggesting little genetic divergence for this trait within species. The species differences and environmental responses may be related to changes in optimal physiological conditions for the flies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号