首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Infectious recombinant viruses were constructed from three molecularly cloned human immunodeficiency virus (HIV) strains varying in cell tropism. All recombinants showed a high infectivity titer on phytohemagglutinin-stimulated normal T lymphocytes. However, a 120-bp region of the envelope gene including the area of the V3 hypervariable loop was found to influence infectivity titer on both clone 1022 CD4-positive HeLa cells and CD4-positive CEM leukemia cells. Infectivity for macrophages was more complex. All viruses replicated in macrophages to a low level, but viral sequences both inside and outside the V3 loop region influenced the efficiency of replication. Two experiments showed that the mechanism of restriction of infection of 1022 cells by HIV strain JR-CSF was related to lack of virus entry. First, productive virus infection occurred after transfection of 1022 cells with viral plasmid DNA. Second, the nonpermissive HIV strain JR-CSF could infect 1022 cells when pseudotyped with the envelope of other retroviruses, including human T-cell leukemia virus type I (HTLV-I), HTLV-II, and amphotropic murine leukemia virus. These results demonstrate the possibility that unexpected cell types might be infected with HIV in human patients coinfected with HIV and HTLV-I or HTLV-II.  相似文献   

2.
Role of CD4 endocytosis in human immunodeficiency virus infection.   总被引:6,自引:4,他引:2       下载免费PDF全文
We have analyzed the role of CD4 endocytosis in human immunodeficiency virus (HIV) entry by measuring the infection of HeLa cells expressing various CD4 constructs with endocytosis rates of between 0.2 and 30%/min in a quantitative infectious focus assay. For a number of laboratory-adapted HIV-1 and HIV-2 strains, the highest levels of infection were found on cells with very limited CD4 endocytosis, while cells with efficient CD4 uptake were only poorly infectable, suggesting that CD4 internalization is not required for HIV entry. This was confirmed in a modified assay involving prebinding of HIV-1LAI to HeLa-CD4 cells at 4 degrees C, synchronized virus entry during warming to 37 degrees C, and neutralization of virions remaining at the cell surface with anti-V3 loop antibodies. Warming cells in hypertonic medium inhibited CD4 endocytosis but did not affect the rate or the extent of infection. These studies confirm that HIV infection does not require endocytosis and that laboratory-adapted virus strains can enter HeLa-CD4 cells by fusion at the plasma membrane.  相似文献   

3.
4.
A number of studies have indicated that central nervous system-derived cells can be infected with human immunodeficiency virus type 1 (HIV-1). To determine whether CD4, the receptor for HIV-1 in lymphoid cells, was responsible for infection of neural cells, we characterized infectable human central nervous system tumor lines and primary fetal neural cells and did not detect either CD4 protein or mRNA. We then attempted to block infection with anti-CD4 antibodies known to block infection of lymphoid cells; we noted no effect on any of these cultured cells. The results indicate that CD4 is not the receptor for HIV-1 infection of the glioblastoma line U373-MG, medulloblastoma line MED 217, or primary human fetal neural cells.  相似文献   

5.
The human immunodefiency virus (HIV) uses the human CD4 glycoprotein as a receptor for infection of susceptible cells. Cells expressing a series of mutated forms of the CD4 gene have shown a variability in their ability to support replication of three HIV type 1 (HIV-1) and three HIV-2 strains. Moreover, when different stages of virus production were examined by a variety of assays, a consistent delay was observed in all cell lines containing CD4 mutants compared with those with intact full-length CD4. Cells expressing the CD4.415 mutant (modified at the serine 415 corresponding to a phosphorylation site of the cytoplasmic domain) showed only a minimal effect on virus replication. Cells expressing CD4.403 and CD4.401 mutants (lacking the whole cytoplasmic domain) manifested a moderate delay in production of virus progeny. The most substantial effect on HIV replication was observed in cells expressing a chimeric hybrid containing sequences corresponding to the first 177 residues of the N-terminal CD4 fused to CD8 sequences encoding the hinge, transmembrane, and cytoplasmic domains of the human CD8. Furthermore, in a cell-to-cell contact assay, fusion was absent when the CD4 proximal membrane domain was replaced by the CD8 counterpart. In addition, a strong correlation between the down-modulation of the surface CD4 and HIV expression was observed. These observations suggest that in addition to the known binding region, other domains of CD4 could play an important role in regulating HIV entry of cells.  相似文献   

6.
Pang S  Yu D  An DS  Baldwin GC  Xie Y  Poon B  Chow YH  Park NH  Chen IS 《Journal of virology》2000,74(23):10994-11000
CD4(-) epithelial cells covering mucosal surfaces serve as the primary barrier to prevent human immunodeficiency virus type 1 (HIV-1) infection. We used HIV-1 vectors carrying the enhanced green fluorescent protein gene as a reporter gene to demonstrate that HIV-1 can infect some CD4(-) human epithelial cell lines with low but significant efficiencies. Importantly, HIV-1 infection of these cell lines is independent of HIV-1 envelope proteins. The Env-independent infection of CD4(-) cells by HIV-1 suggests an alternative pathway for HIV-1 transmission. Even on virions bearing Env, a neutralizing antibody directed against gp120 is incapable of neutralizing the infection of these cells, thus raising potential implications for HIV-1 vaccine development.  相似文献   

7.
Human immunodeficiency virus (HIV) infection of the thymus could have profound effects on development of the immune response, particularly in children. We and others have established that in addition to infecting and depleting CD4-bearing thymocytes, functional HIV proviruses are found in thymocytes lacking surface CD4 expression. Using in vitro thymocyte cultures, we show that neither HIV-mediated down regulation of CD4 nor CD4-independent infection contributes to the localization of HIV in cells lacking the primary virus receptor. Rather, infection of a CD4-positive precursor cell (CD4 positive/CD8 positive) with subsequent differentiation into a mature CD4-negative phenotype results in productively infected CD4-negative cells. This novel mechanism may contribute to pathogenesis by distributing viral sequences into functional subsets of T cells typically refractory to HIV infection and could account for the presence of viral DNA in CD8-positive lymphocytes recently observed in patients.  相似文献   

8.
9.
Chemokine receptors, particularly CCR5 and CXCR4, act as essential coreceptors in concert with CD4 for cellular entry by human immunodeficiency virus type 1 (HIV-1; reviewed in [1]). But infection of CD4(-) cells has also been encountered in various tissues in vivo, including astrocytes, neurons and microvascular endothelial cells of the brain [2] [3] [4] [5] [6], epithelial cells [5] [7], CD4(-) lymphocytes and thymocytes [8] [9], and cardiomyocytes [10]. Here, we present evidence for the infection of CD4(-) cell lines bearing coreceptors by well-known HIV-1 strains when co-cultured with CD4(+) cells. This process requires contact between the coreceptor-bearing and CD4(+) cells and supports the full viral replication cycle within the coreceptor-bearing target cell. Furthermore, CD4 provided in trans facilitates infection of primary human cells, such as brain-derived astrocytes. Although the pathobiological significance of infection of CD4(-) cells in vivo remains to be elucidated, this trans-receptor mechanism may facilitate generation of hidden reservoirs of latent virus that confound antiviral therapies and that contribute to specific AIDS-associated clinical syndromes.  相似文献   

10.
11.
Most simian immunodeficiency virus (SIV), human immunodeficiency virus type 2 (HIV-2), and HIV-1 infection of host peripheral blood mononuclear cells (PBMCs) is CD4 dependent. In some cases, X4 HIV-1 chemotaxis is CD4 independent, and cross-species transmission might be facilitated by CD4-independent entry, which has been demonstrated for some SIV strains in CD4(-) non-T cells. As expected for CCR5-dependent virus, SIV required CD4 on rhesus and pigtail macaque PBMCs for infection and chemotaxis. However, SIV induced the chemotaxis of human PBMCs in a CD4-independent manner. Furthermore, in contrast to the results of studies using transfected human cell lines, SIV did not require CD4 binding to productively infect primary human PBMCs. CD4-independent lymphocyte and macrophage infection may facilitate cross-species transmission, while reacquisition of CD4 dependence may confer a selective advantage for the virus within new host species.  相似文献   

12.
13.
A Werner  G Winskowsky    R Kurth 《Journal of virology》1990,64(12):6252-6256
The CD4 molecule is expressed on T-helper cells and serves as the cellular receptor for the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and for the simian immunodeficiency viruses SIVmac and SIVagm. HIV-1, HIV-2, and SIVmac infectivity can be blocked by monoclonal antibodies (MAbs) directed against the CD4 molecule and by soluble CD4 proteins (sCD4). In the present study, we demonstrated not only lack of inhibition, but 10- to 100-fold sCD4-dependent enhancement of SIVagm infectivity of human T-cell lymphoma lines, although SIVagm infection was blocked by MAbs OKT4a and Leu3a. SIVagm enhancement with sCD4 was suppressed by MAbs OKT4a and Leu3a to levels observed without addition of sCD4. The infectivity of all four tested SIVagm variants was enhanced by sCD4 on all tested lymphoma cell lines. These results suggest a second step (second or secondary receptor) required for enhancing virus entry into the cell and may have serious implications for approaches to the treatment of acquired immunodeficiency syndrome on the basis of modified sCD4 molecules.  相似文献   

14.
Expression of the human immunodeficiency virus type 1 (HIV-1) receptor CD4 on many nonhuman and some human cell lines is not sufficient to permit HIV-1 infection. We describe a human glioblastoma cell line (U373-MG) which remains resistant to HIV-1 despite the added expression of an authentic CD4 molecule. The block to HIV-1 infection of these cells is strain independent and appears to be at viral entry. Heterokaryons of CD4-expressing U373-MG (U373-CD4) cells fused to HeLa cells allow HIV-1 entry. A U373-CD4/HeLa hybrid clone allows efficient HIV-1 replication. These results suggest that HeLa cells express a factor(s) that can complement the viral entry defect of U373-CD4 cells and is necessary for efficient CD4-mediated HIV-1 infection.  相似文献   

15.
Human immunodeficiency virus (HIV)-infected CD8 lymphocytes have been reported in vivo, but the mechanism of infection remains unclear. Experiments using the thy/hu mouse model support export of intrathymically infected CD8 precursors, while recent in vitro data suggest that mature CD8 lymphocytes upregulate CD4 upon activation (generating a CD8bright CD4dim phenotype) and are susceptible to HIV infection. To determine whether these mechanisms operate in vivo and to assess their relative importance in the generation of circulating HIV-infected CD8 lymphocytes, we quantified HIV long terminal repeat (LTR) DNA in CD8+ CD4- and CD8bright CD4dim lymphocytes isolated from HIV-infected individuals by fluorescence-activated cell sorting. HIV infection of CD8 lymphocytes was demonstrated in 17 of 19 subjects, with a significant inverse relationship between level of infection and CD4 lymphocyte count (R = -0.73; P < 0.001). The level of HIV infection of CD8bright CD4dim lymphocytes was significantly higher (median, 1,730 HIV LTR copies/10(6) cells; n = 9) than that of CD8+ CD4- lymphocytes (undetectable in seven of nine individuals; P < 0.01) and approached that of CD4 lymphocytes from the same individuals (median, 3,660 HIV LTR copies/10(6) cells). CD8bright CD4dim lymphocytes represented 0.8 to 3.3% of total CD8 lymphocytes and were most prevalent in the memory subset. Thus, HIV-infected CD8 lymphocytes commonly circulate in HIV-infected individuals and are generated through infection of activated CD8 lymphocytes rather than through export of intrathymically infected precursors. The high level of infection of CD8bright CD4dim lymphocytes could have a direct role in the decline in CD8 lymphocyte function that accompanies HIV disease progression.  相似文献   

16.
The effect of weak bases (NH4Cl and amantadine) and carboxylic ionophores (monensin) on the infection of CD4 (T4) positive human cell lines by HIV-1 is examined. These reagents, which raise the pH of acidic intracellular organelles, fail to inhibit HIV-1 entry and the events leading to viral protein synthesis at concentrations inhibitory for low pH-dependent fusogenic enveloped viruses. The infectivity of VSV (HIV-1) pseudotypes is unaffected by weak bases at concentrations causing 95% plaque reduction of VSV in its own envelope. HIV-1 dependent cell--cell fusion (syncytium formation) occurs in medium maintained at pH 7.4-7.6, and virions are not irreversibly inactivated by incubation in acid medium. Our results show that HIV-1 entry and membrane fusion do not require exposure to low pH. The production of infectious HIV-1 particles, however, is inhibited in cells treated with NH4Cl.  相似文献   

17.
In established T-cell lines, the membrane-fusing capacity of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins mediates cytopathic effects, both syncytium formation and single-cell lysis. Furthermore, changes in the HIV-1 envelope glycoproteins are responsible for the increased CD4(+) T-cell-depleting ability observed in infected monkeys upon in vivo passage of simian-human immunodeficiency virus (SHIV) chimeras. In this study, a panel of SHIV envelope glycoproteins and their mutant counterparts defective in membrane-fusing capacity were expressed in primary human CD4(+) T cells. Compared with controls, all of the functional HIV-1 envelope glycoproteins induced cell death in primary CD4(+) T-cell cultures, whereas the membrane fusion-defective mutants did not. Death occurred almost exclusively in envelope glycoprotein-expressing cells and not in bystander cells. Under standard culture conditions, most dying cells underwent lysis as single cells. When the cells were cultured at high density to promote syncytium formation, the envelope glycoproteins of the passaged, pathogenic SHIVs induced more syncytia than those of the respective parental SHIV. These results demonstrate that the HIV-1 envelope glycoproteins induce the death of primary CD4(+) T lymphocytes by membrane fusion-dependent processes.  相似文献   

18.
19.
It is generally recognized that macrophage-tropic human immunodeficiency virus type 1 (HIV-1) is the predominant population during the acute and asymptomatic phases of HIV-1 infection. Here, we compared the proliferation and syncytium-inducing activities of different HIV-1 strains in primary CD4+ T cells expressing various helper T (Th)-type cytokine profiles. The macrophage-tropic HIV-1 strains HIV-1JR-CSF, HIV-1NFN-SX, and HIV-1SF162 could proliferate vigorously and generate syncytia in primary CD4+ T cells irrespective of their Th subtype, in contrast to the T-cell-line-tropic HIV-1 strains HIV-1NL4-3 and HIV-1IIIB, which favored non-type 1 Th conditions. These results indicate that macrophage-tropic HIV-1 may be more invasive and virulent, since it kills more CD4+ Th1 cells than T-cell-line-tropic HIV-1 during the early stages of HIV-1 infection, when the Th1 immune response is dominant.  相似文献   

20.
During a comparison of the infectivity of mNDK, a CD4-independent human immunodeficiency virus type 1 (HIV-1) strain, to various cell lines, we found that HeLa cells were much less susceptible than 293T and TE671 cells. Hybridoma cells between HeLa and 293T cells were as susceptible as 293T cells, suggesting that cellular factors enhance the mNDK infection in 293T cells. By screening a cDNA expression library in HeLa cells, cystatin C was isolated as an enhancer of the mNDK infection. Because cathepsin B protease, a natural ligand of cystatin C, was upregulated in HeLa cells, we speculated that the high levels of cathepsin B activities were inhibitory to the CD4-independent infection and that cystatin C enhanced the infection by impairing the excessive cathepsin B activity. Consistent with this idea, pretreatment of HeLa cells with 125 μM of CA-074Me, a cathepsin B inhibitor, resulted in an 8-fold enhancement of the mNDK infectivity. Because cathepsin B is activated by low pH in acidic endosomes, we further examined the potential roles of endosomes in the CD4-independent infection. Suppression of endosome acidification or endocytosis by inhibitors or by an Eps15 dominant negative mutant reduced the infectivity of mNDK in which CD4-dependent infections were not significantly impaired. Taken together, these results suggest that endocytosis, endosomal acidification, and cathepsin B activity are involved in the CD4-independent entry of HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号