首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wu G  Xiao M  Yang C  Yu YT 《The EMBO journal》2011,30(1):79-89
All pseudouridines identified in RNA are considered constitutive modifications. Here, we demonstrate that pseudouridylation of Saccharomyces cerevisiae U2 snRNA can be conditionally induced. While only Ψ35, Ψ42 and Ψ44 are detected in U2 under normal conditions, nutrient deprivation leads to additional pseudouridylation at positions 56 and 93. Pseudouridylation at position 56 can also be induced by heat shock. Detailed analyses have shown that Pus7p, a single polypeptide pseudouridylase known to modify U2 at position 35 and tRNA at position 13, catalyses Ψ56 formation, and that snR81 RNP, a box H/ACA RNP known to modify U2 snRNA at position 42 and 25S rRNA at position 1051, catalyses Ψ93 formation. Using mutagenesis, we have demonstrated that the inducibility can be attributed to the imperfect substrate sequences. By introducing Ψ93 into log-phase cells, we further show that Ψ93 has a role in pre-mRNA splicing. Our results thus demonstrate for the first time that pseudouridylation of RNA can be induced at sites of imperfect sequences, and that Pus7p and snR81 RNP can catalyse both constitutive and inducible pseudouridylation.  相似文献   

3.
4.
Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.  相似文献   

5.
6.
7.
Pseudouridine synthase 3 from mouse modifies the anticodon loop of tRNA   总被引:2,自引:0,他引:2  
Chen J  Patton JR 《Biochemistry》2000,39(41):12723-12730
A cDNA encoding mouse pseudouridine synthase 3 (mPus3p) has been cloned. The predicted protein has 34% identity with yeast pseudouridine synthase 3 (Pus3), an enzyme known to form pseudouridine at positions 38 and 39 in yeast tRNA. The cDNA is 1.7 kb, and when used as a probe on a Northern blot of total RNA from mouse tissues or cells in culture, a band at 1.8 kb was observed. The open reading frame codes for a protein of 481 amino acids with a predicted molecular mass of 55 552 Da. When mPus3p was in vitro translated and used in reactions with tRNA substrates from both yeast and humans, uridines at position 39 were modified to pseudouridine. In a tRNA substrate with a uridine at position 38 (human tRNA(Leu)), there was very slight formation of pseudouridine at that position after incubation with mPus3p.  相似文献   

8.
Cytoplasmic and mitochondrial tRNAs contain several pseudouridylation sites, and the tRNA:Psi-synthase acting at position 32 had not been identified in Saccharomyces cerevisiae. By combining genetic and biochemical analyses, we demonstrate that two enzymes, Rib2/Pus8p and Pus9p, are required for Psi32 formation in cytoplasmic and mitochondrial tRNAs, respectively. Pus9p acts mostly in mitochondria, and Rib2/Pus8p is strictly cytoplasmic. This is the first case reported so far of two distinct tRNA modification enzymes acting at the same position but present in two different compartments. This peculiarity may be the consequence of a gene fusion that occurred during yeast evolution. Indeed, Rib2/Pus8p displays two distinct catalytic activities involved in completely unrelated metabolism: its C-terminal domain has a DRAP-deaminase activity required for riboflavin biogenesis in the cytoplasm, whereas its N-terminal domain carries the tRNA:Psi32-synthase activity. Pus9p has only a tRNA:Psi32-synthase activity and contains a characteristic mitochondrial targeting sequence at its N terminus. These results are discussed in terms of RNA:Psi-synthase evolution.  相似文献   

9.
10.
Steroid receptor RNA activator (SRA), the only known RNA coactivator, augments transactivation by nuclear receptors (NRs). We identified SLIRP (SRA stem-loop interacting RNA binding protein) binding to a functional substructure of SRA, STR7. SLIRP is expressed in normal and tumor tissues, contains an RNA recognition motif (RRM), represses NR transactivation in a SRA- and RRM-dependent manner, augments the effect of Tamoxifen, and modulates association of SRC-1 with SRA. SHARP, a RRM-containing corepressor, also binds STR7, augmenting repression with SLIRP. SLIRP colocalizes with SKIP (Chr14q24.3), another NR coregulator, and reduces SKIP-potentiated NR signaling. SLIRP is recruited to endogenous promoters (pS2 and metallothionein), the latter in a SRA-dependent manner, while NCoR promoter recruitment is dependent on SLIRP. The majority of the endogenous SLIRP resides in the mitochondria. Our data demonstrate that SLIRP modulates NR transactivation, suggest it may regulate mitochondrial function, and provide mechanistic insight into interactions between SRA, SLIRP, SRC-1, and NCoR.  相似文献   

11.
12.
13.
Yeast RNA:pseudouridine synthetase Pus1 catalyzes the formation of pseudouridines in tRNAs. We report here the quaternary structure of purified recombinant Pus1 in solution. At low concentration, in the absence of tRNA, Pus1 oligomerizes while at high concentration it precipitates. This oligomerization/aggregation can be prevented by addition of dodecyl-beta-D-maltoside or of yeast tRNA(Phe). The detergent does not significantly interfere with substrate binding or with activity of Pus1. The stoichiometry of the Pus1/tRNA(Phe) complex is 1/1. We conclude that the detergent covers an hydrophobic region of the RNA binding pocket responsible for Pus1 aggregation.  相似文献   

14.
The RNA:pseudouridine (Psi)-synthase family is one of the most complex families of RNA modification enzymes. Ten genes encoding putative RNA:Psi-synthases have been identified in S. cerevisiae. Most of the encoded enzymes have been characterized experimentally. Only the putative RNA:Psi-synthase Pus2p (encoded by the YGL063w ORF) had no identified substrate. Here, we analyzed Psi residues in cytoplasmic and mitochondrial tRNAs extracted from S. cerevisiae strains, carrying disruptions in the PUS1 and/or PUS2 ORFs. Our results demonstrate that Pus2p is a mitochondrial-specific tRNA:Psi-synthase acting at positions 27 and 28 in tRNAs. The importance of the Asp56 residue in the conserved ARTD motif of the Pus2p catalytic site is demonstrated in vivo. Interestingly, in spite of the absence of a characteristic N-terminal targeting signal, our data strongly suggest an efficient and rapid targeting of Pus2p in yeast mitochondria. In contradiction with the commonly held idea that a unique nuclear gene encodes the enzyme required for both cytoplasmic and mitochondrial tRNA modifications, here we show the existence of an enzyme specifically dedicated to mitochondrial tRNA modification (Pus2p), the corresponding modification in cytoplasmic tRNAs being catalyzed by another protein (Pus1p).  相似文献   

15.
Yeast Pus1p catalyzes the formation of pseudouridine (psi) at specific sites of several tRNAs, but its function is not essential for cell viability. We show here that Pus1p becomes essential when another tRNA:pseudouridine synthase, Pus4p, or the essential minor tRNA for glutamine are mutated. Strikingly, this mutant tRNA, which carries a mismatch in the T psi C arm, displays a nuclear export defect. Furthermore, nuclear export of at least one wild-type tRNA species becomes defective in the absence of Pus1p. Our data, thus, show that the modifications formed by Pus1p are essential when other aspects of tRNA biogenesis or function are compromised and suggest that impairment of nuclear tRNA export in the absence of Pus1p might contribute to this phenotype.  相似文献   

16.
Pseudouridine synthase 1 (Pus1p) is an enzyme that converts uridine to Pseudouridine (Ψ) in tRNA and other RNAs in eukaryotes. The active site of Pus1p is composed of stretches of amino acids that are highly conserved and it is hypothesized that mutation of select residues would impair the enzyme's ability to catalyze the formation of Ψ. However, most mutagenesis studies have been confined to substitution of the catalytic aspartate, which invariably results in an inactive enzyme in all Ψ synthases tested. To determine the requirements for particular amino acids at certain absolutely conserved positions in Pus1p, three residues (R116, Y173, R267) that correspond to amino acids known to compose the active site of TruA, a bacterial Ψ synthase that is homologous to Pus1p, were mutated in human Pus1p (hPus1p). The effects of those mutations were determined with three different in vitro assays of pseudouridylation and several tRNA substrates. Surprisingly, it was found that each of these components of the hPus1p active site could tolerate certain amino acid substitutions and in fact most mutants exhibited some activity. The most active mutants retained near wild-type activity at positions 27 or 28 in the substrate tRNA, but activity was greatly reduced or absent at other positions in tRNA readily modified by wild-type hPus1p.  相似文献   

17.
Yeast U2 small nuclear RNA (snRNA) contains three pseudouridines (Psi35, Psi42, and Psi44). Pus7p and Pus1p catalyze the formation of Psi35 and Psi44, respectively, but the mechanism of Psi42 formation remains unclear. Using a U2 substrate containing a single (32)P radiolabel at position 42, we screened a GST-ORF library for pseudouridylase activity. Surprisingly, we found a Psi42-specific pseudouridylase activity that coincided with Nhp2p, a protein component of a Box H/ACA sno/scaRNP (small nucleolar/Cajal body-specific ribonucleoprotein). When isolated by tandem affinity purification (TAP), the other protein components of the H/ACA sno/scaRNP also copurified with the pseudouridylase activity. Micrococcal nuclease-treated TAP preparations were devoid of pseudouridylase activity; however, activity was restored upon addition of RNAs from TAP preparations. Pseudouridylation reconstitution using RNAs from a Box H/ACA RNA library identified snR81, a snoRNA known to guide rRNA pseudouridylation, as the Psi42-specific guide RNA. Using the snR81-deletion strain, Nhp2p- or Cbf5p-conditional depletion strain, and a cbf5 mutation strain, we further demonstrated that the pseudouridylase activity is dependent on snR81 snoRNP in vivo. Our data indicate that snRNA pseudouridylation can be catalyzed by both RNA-dependent and RNA-independent mechanisms.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号