首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LOCALIZATION OF MYOSIN FILAMENTS IN SMOOTH MUSCLE   总被引:1,自引:10,他引:1       下载免费PDF全文
Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.  相似文献   

2.
ULTRASTRUCTURAL STUDIES ON THE CONTRACTILE MECHANISM OF SMOOTH MUSCLE   总被引:15,自引:9,他引:6       下载免费PDF全文
Fresh taenia coli and chicken gizzard smooth muscle were studied in the contracted and relaxed states. Thick and thin filaments were observed in certain (but not all) cells fixed in contraction. Relaxed smooth muscle contained only thin filaments. Several other morphological differences were observed between contracted and relaxed smooth muscle. The nuclear chromatin is clumped in contraction and evenly dispersed in the relaxed state. The sarcolemma is more highly vesiculated in contraction than in relaxation. In contraction, the sarcoplasm also appears more electron opaque. Over-all morphological differences between cells fixed in isometric and in unloaded contraction were also noticeable. The results suggest a sliding filament mechanism of smooth muscle contraction; however, in smooth muscle, unlike striated muscle, the thick filaments appear to be in a highly labile condition in the contractile process. The relation between contraction and a possible change in pH is also discussed.  相似文献   

3.
An extensive study of adult and developing smooth muscle has revealed the widespread occurrence of a distinct filament with an average diameter of about 100 A (termed the 100 A filament). Unlike that of myofilaments, their appearance in longitudinal section is uniform, but in transverse section they have a round profile, occasionally exhibiting a less electron-opaque core. The 100 A filaments are almost invariably preserved under a variety of fixation procedures, whereas myofilaments, particularly the thicker filaments, are preserved inconsistently. The 100 A filaments appear to be randomly oriented throughout the cytoplasm, either singly or in small groups, although they are sometimes concentrated in the juxtanuclear region of the smooth muscle cells. The intimate association of 100 A filaments with dark bodies, in both developing and adult smooth muscle cells, may indicate that these filaments either play a role in dark body formation or, at least, constitute a part of the dark body. The 100 A filaments are conspicuous in developing smooth muscle cells and occasionally form networks or clusters; they appear to decrease in relative number as maturation proceeds, but considerable numbers are still present in adult tissue.  相似文献   

4.
THE DOUBLE ARRAY OF FILAMENTS IN CROSS-STRIATED MUSCLE   总被引:42,自引:28,他引:14       下载免费PDF全文
The conditions under which one might expect to see the secondary filaments (if they exist) in longitudinal sections of striated muscle, are discussed. It is shown that these conditions were not satisfied in previously published works for the sections were too thick. When suitably thin sections are examined, the secondary filaments can be seen perfectly easily. It is also possible to see clearly other details of the structure, notably the cross-bridges between primary and secondary filaments, and the tapering of the primary filaments at their ends. The arrangement of the filaments and the changes associated with contraction and with stretch are identical to those already deduced from previous observations and described in terms of the interdigitating filament model in previous papers. There are therefore excellent grounds for believing that this model is correct. The alternative models which have been proposed appear to be incompatible both with the present observations and with much of the other available evidence.  相似文献   

5.
ARCHITECTURE AND NERVE SUPPLY OF MAMMALIAN SMOOTH MUSCLE TISSUE   总被引:24,自引:19,他引:5       下载免费PDF全文
Smooth muscle tissue from mouse urinary bladder, uterus, and gall bladder has been studied by means of the electron microscope. The smooth muscle cells are distinctly and completely separated from each other by a cytolemma comparable to the sarcolemma of striated muscle. The tissue is thus cellular and not syncytial. With this evidence, supported by electron microscopy of other tissues, we question the existence of true syncytia in animal tissues. Individual cell membranes necessary for the electrophysiologic events exist in smooth muscle, and its nerve and conduction in a tissue such as uterus or bladder can occur at the cellular level as well as at the tissue area level. The smooth muscle cell contains myofilaments, nucleus, endoplasmic reticulum, mitochondria, Golgi complex, centrosome, and pinocytotic vesicles. These structures are described in some detail, and their probable interrelations and functions are discussed. The autonomic nerves innervating smooth muscle cells are composed of axons and lemnoblasts. The axon is suspended by the mesaxon formed by the infolded plasma membrane of the lemnoblast. The respective plasma membranes separate axon and lemnoblast from each other and from surrounding muscle cells. The axons of autonomic nerves never penetrate the plasma membrane of the muscle cell, but pass or intrude into muscle cell pockets, forming a contact between axonal plasma membrane and smooth muscle plasma membrane. The lemnoblast shows well developed endoplasmic reticulum with Palade granules, mitochondria, and a long, elliptical nucleus. The axon contains neurofilaments, mitochondria, and synaptic vesicles; the quantity of the latter two being significantly greater in the periphery of lemnoblasts and near axon-muscle contact regions. We regard the contact regions as the synapses between the autonomic nerves and the smooth muscle cells.  相似文献   

6.
胃动素对大鼠胃平滑肌细胞收缩活动的作用   总被引:18,自引:2,他引:18  
周吕  王新 《生理学报》1996,48(2):165-172
本研究用大鼠游离的胃平滑肌细胞,观察胃动素对胃平滑肌细胞的收缩作用。结果表明:(1)胃动素明显增强单个胃平滑肌细胞收缩活动,在生理剂量10(-11)─10(-10)mol范围内,呈剂量依赖性。(2)不同胃分区平滑肌细胞对冒动素兴奋反应不同,胃动素对胃窦平滑肌细胞收缩强度大于胃体和幽门。(3)给予抗胃动素血清可以完全取消胃动素对胃肌细胞的收缩反应,而阿托品、TTX、甲氰米胍、loxiglumide均不影响胃动素的作用。(4)给予胞内钙释放阻断剂TMB-8可抑制胃动素对目肌细胞的收缩作用。上述结果提示,胃动素对胃平滑肌细胞的直接作用是由胃动素受体所介导,且与胞内Ca(2+)释放起重要作用。  相似文献   

7.
8.
THE ORGANIZATION OF FLIGHT MUSCLE FIBERS IN THE ODONATA   总被引:9,自引:9,他引:0       下载免费PDF全文
The cytological organization of flight muscle fibers of Odonata has been investigated. These fibers, in representatives of the Zygoptera and Anisoptera, have been compared and found to be similar, except that, in the former, pairs of lamellar fibrils, rather than single fibrils, alternate with the mitochondria. In each instance, in these synchronous muscles, the actin filaments of the myofibrils are found to lie opposite to and midway between pairs of myosin filaments—a configuration previously reported in asynchronous flight muscle fibers. The disposition of the T system and sarcoplasmic reticulum membranes in glutaraldehyde-fixed anisopteran muscle is described in detail: the T system tubules are shown to be radially continuous across the fiber, and are derived as openmouthed invaginations from the surface cell-membrane. The detailed organization of the dyad junctions between these tubules and the adjoining cisternae of the sarcoplasmic reticulum is described. The accessibility of the T system interior to diffusion exchange with the general extracellular milieu has been investigated by studies on the penetration of ferritin into the fiber: molecules of this marker have been found to diffuse solely along the T system tubules, and their presence in the tubule extremities adjoining the centrally placed nuclei confirms the morphological evidence suggesting that these tubules provide open diffusion channels extending across the radius of the fiber. The possible physiological role of these membrane components and their distribution in synchronous muscles of insects and vertebrates and in asynchronous insect flight muscle are discussed.  相似文献   

9.
Papillary muscles of rat and dog hearts were fixed in such a way as to prevent excessive shortening during the procedure. The material was embedded in either araldite or methacrylate and was stained in various ways. The filamentous fine structure of mammalian cardiac muscle is similar to that previously described for striated skeletal muscle. The sarcomeres are composed of a set of thick and thin filaments which interdigitate in the A band proper. The filament ratios and the filamentous array are in accord with those found in skeletal muscle. The functional significance of this twofold array of filaments is not entirely clear. Various other structural aspects of cardiac cells such as surface membranes, mitochondria, nuclei, and cytoplasmic granules are described. The sarcoplasmic reticulum is discussed in detail as are the various structural components forming the intercalated discs. Fairly frequent deep invaginations of the sarcolemma with basement membrane are observed in addition to the intercalated discs. These surface membrane invaginations probably explain the branching appearance of cardiac fibers as seen under the light microscope.  相似文献   

10.
The length-tension relationship was determined for strips of guinea pig taenia coli and correlated with the length and ultrastructural organization of the component fibers. The mean fiber length in "stretched" strips (passive ≥ active tension) was 30% greater than that for fibers in "unstretched" strips (active >> passive tension). In stretched fibers the dense bodies and 100 A diameter myofilaments were consolidated into a mass near the center of fibers in cross-sectional profile. The thick myofilaments were segregated into the periphery of the fiber profiles. In unstretched fibers the dense bodies-100 A diameter filaments and the thick myofilaments were uniformly distributed throughout cross-sectional profiles. A tentative model is proposed to account for the change in fiber length and ultrastructural organization that accompanies stretch. The basic features of the model require the dense bodies to be linked together into a network by the 100 A diameter filaments. The functional consequences of stretching the fibers are discussed in relation to the model proposed for this network.  相似文献   

11.
A STUDY OF NEXUSES IN VISCERAL SMOOTH MUSCLE   总被引:7,自引:5,他引:2       下载免费PDF全文
Nexuses are described between the smooth muscle cells of the gizzard of the chick and the pigeon, the vas deferens of the mouse and the guinea pig, and the taenia coli of the guinea pig. The nexuses in the gizzard were examined after osmium tetroxide and potassium permanganate had been used as fixatives. Although differences in the dimensions of the unit membranes and the nexuses were noted, the results with the two fixation techniques were complementary. The distribution of nexuses within the smooth muscle tissues examined was uneven. Nexuses were still present in both small and large pieces of tissue incubated in hypertonic solutions at varying temperatures. Other experiments showed that the degree of contraction at the time of fixation did not affect the presence of nexuses in the tissue. These results indicate that nexuses between smooth muscle cells are stable under a variety of conditions.  相似文献   

12.
1. The structure of the smooth muscle fibres in the longitudinal muscle coat of the body wall of Lumbricus terrestris has been investigated by phase contrast light microscopy and electron microscopy. 2. The muscle fibre is ribbon-shaped, and attached to each of its two surfaces is a set of myofibrils. These are also ribbon-shaped, and they lie with their surfaces perpendicular to the surfaces of the fibre, and their inner edges nearly meeting in the middle of the fibre. These fibrils are oriented at an angle to the fibre axis, and diminish greatly in width as they approach the edge of the fibre. The orientation of the set of fibrils belonging to one surface of the fibre is the mirror image of that of the set belonging to the other surface; thus, when both sets are in view in a fibre lying flat on one face, the fibre exhibits double oblique striation. A comparison of extended and contracted fibres indicates that as the fibre contracts, the angle made between fibre and fibril axes increases (e.g. from 5 to 30°) and so does the angle made between the two sets of fibrils (e.g. from 10 to 60°). 3. The myofibril, throughout its length, contains irregularly packed filaments, commonly 250 A in diameter, which are parallel to its long axis and remain straight in contracted muscles. Between them is material which probably consists of much finer filaments. Thus A and I bands are absent. 4. Bound to one face of each fibril, but not penetrating inside it, is a regularly spaced series of transverse stripes. They are of two kinds, alternating along the length of the fibril, and it is suggested that they are comparable to the Z and M lines of a cross-striated fibril. The spacing of these stripes is about 0.5 µ ("Z" to "Z") in extended muscles, and 0.25 µ in contracted muscles. A bridge extends from each stripe across to the stripeless surface of the next fibril.  相似文献   

13.
Limulus paramyosin and myosin were localized in the A bands of glycerinated Limulus striated muscle by the indirect horseradish peroxidase-labeled antibody and direct and indirect fluorescent antibody techniques. Localization of each protein in the A band varied with sarcomere length. Antiparamyosin was bound at the lateral margins of the A bands in long (~ 10.0 µ) and intermediate (~ 7.0 µ) length sarcomeres, and also in a thin line in the central A bands of sarcomeres, 7.0–~6.0 µ. Antiparamyosin stained the entire A bands of short sarcomeres (<6.0). Conversely, antimyosin stained the entire A bands of long sarcomeres, showed decreased intensity of central A band staining except for a thin medial line in intermediate length sarcomeres, and was bound only in the lateral A bands of short sarcomeres. These results are consistent with a model in which paramyosin comprises the core of the thick filament and myosin forms a cortex. Differential staining observed using antiparamyosin and antimyosin at various sarcomere lengths and changes in A band lengths reflect the extent of thick-thin filament interaction and conformational change in the thick filament during sarcomeric shortening.  相似文献   

14.
The walls of the gastrointestinal tract and urinary bladder of rats were fixed in osmium tetroxide, embedded in methacrylate, and sectioned for electron microscopy. The examination of sections of smooth muscle tissue with the electron microscope reveals the presence of bundles of unmyelinated nerve fibers within the intercellular spaces. In addition, vesiculated nerve processes, bounded on their outer surfaces by delicate plasma membranes and typically containing varying quantities of synaptic vesicles and mitochondria, make intimate contact with the surface of smooth muscle cells. These nerve processes are similar in structure and disposition to nerve endings previously described in skeletal muscle, in the central nervous system, in peripheral ganglia, in receptors, and in glands. It is concluded that the relationships existing between vesiculated nerve processes and the surface of smooth muscle cells constitute neuromuscular junctions. Profiles of protrusions of smooth muscle cells are often seen protruding into the intercellular spaces. Here they occur singly or in groups, originating from one or more cells. Because of the plane of section the protrusions may sometimes appear as individual entities between the muscle cells. In such cases care must be exercised in their identification because they have characteristics similar to sectioned nerve processes which also occur in the intercellular spaces.  相似文献   

15.
G. ROSKIN 《Acta zoologica》1925,6(1-2):253-268
  相似文献   

16.
Phase microscopy of toad urinary bladder has demonstrated that vasopressin can cause an enlargement of the epithelial intercellular spaces under conditions of no net transfer of water or sodium. The suggestion that this phenomenon is linked to the hormone's action as a smooth muscle relaxant has been tested and verified with the use of other agents effecting smooth muscle: atropine and adenine compounds (relaxants), K+ and acetylcholine (contractants). Furthermore, it was possible to reduce the size and number of intercellular spaces, relative to a control, while increasing the rate of osmotic water flow. A method for quantifying these results has been developed and shows that they are, indeed, significant. It is concluded, therefore, that the configuration of intercellular spaces is not a reliable index of water flow across this epithelium and that such a morphologic-physiologic relationship is tenuous in any epithelium supported by a submucosa rich in smooth muscle.  相似文献   

17.
A sheath consisting of filaments 50–70 A in diameter has been demonstrated in association with the expanded, leading margins of the cleavage furrow in unilaterally and symmetrically cleaving eggs of a jellyfish and a polychaete worm, respectively. The observations suggest that the filament system might provide a structural basis for the existence of the contractile gel that, according to a hypothesis by Marsland and Landau, accomplishes cleavage. The filamentous sheath is present only in the furrow region and is arranged in an arcuate manner in unilaterally cleaving eggs and circumferentially in symmetrical cleavage. The filaments appear to be of finite length, and a number of them must overlap to span the length of the furrow. Contraction may be accomplished if the filaments slide relative to each other. However, contraction per se was experimentally not demonstrated in the studied systems. The disappearance of microvilli and the merocrine type secretion of mucoid droplets at the interdigitating or "spinning" membrane region of unilateral cleavage suggest that the unfolding of a pleated membrane and the insertion of intracytoplasmic membranes might contribute, at least in part, to the necessary extra cell membrane.  相似文献   

18.
Strips of taenia coli from guinea pigs were incubated under isometric conditions in Krebs-Ringer bicarbonate saline (MKR) containing various concentrations of Ca+2 and/or Mg+2. Spontaneous or chemically induced contractile activity was abolished within 15 min of exposure to MKR containing Ca+2 at concentrations below 10-6 M; contractile activity was restored by reincubation in normal MKR after 1–2 h. Exposure of taenia coli to MKR containing Ca+2 at concentrations below 10-6 M for 1 h or more led to loss of thick and thin myofilaments from the sarcoplasm as observed with the electron microscope. Except for the loss of these two filament types, the cells contained all other structural features observed in preparations incubated in MKR containing Ca+2 at its normal level (1.3 x 10-3 M). The loss of thick and thin myofilaments in strips exposed to a Ca+2 concentration below 10-6 M was reversed by reincubation for 30 min in MKR containing normal Ca+2 levels. The observed loss of thick and thin myofilaments in response to low Ca+2 is interpreted as resulting from the disaggregation of some or all of the molecular components of these two filament types.  相似文献   

19.
The fine structure of the longitudinal layer of the tunica muscularis of the mouse jejunum was studied in various stages of mechanically stimulated contraction. The relaxed cell is long and narrow with smooth cytoplasmic and nuclear contours. As contraction progresses, the cell becomes ellipsoid and its borders exhibit invaginations at the points of myofilamentous attachment to the plasma membrane and vesicle-containing projections of the intervening membrane. These changes are interpreted as representing the deforming forces applied by the myofilaments to the plasma membrane. The nucleus of the contracted cell is shortened and widened, with convolution of its limiting membranes. This alteration, as well as progressive changes in the alignment of cytoplasmic organelles, is thought to be due to forces exerted on the internal structure of the cell by the contractile elements. The myofilaments form a network of oriented bundles during contraction. Aggregates of filaments of two different diameters are noted. The two sizes of filaments intermingle only in small areas of increased density. These dense areas increase in length and number during contraction. A model of the functional organization of the cell is proposed.  相似文献   

20.
The structure of the flight muscle of a dragonfly (Aeshna sp.) has been studied with the light and electron microscopes, and the organization of this specialized tubular muscle is described. This tissue is characterized by the great development of the sarcosomes, which are slab-like and are arranged within the fiber opposite each sarcomere of the radially oriented lamellar myofibrils. A well developed and highly ordered sarcoplasmic reticulum is present, consisting of perforated curtain-like cisternae extending across the face of each fibril, together with tubular invaginations of the fiber plasma membrane situated within indentations in the sarcosomes and traversing the fibril surface midway between the Z and M levels. The structure of these fibers, and notably the organization of the reticulum, is compared with that of other types of muscle, and the possible role of the two components of the sarcoplasmic reticulum in the contraction physiology of the dragonfly muscle fiber is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号