首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Yedgar  S Gatt 《Biochemistry》1976,15(12):2570-2573
Mixed dispersions of the nonionic detergent Triton X-100 and sphingomyelin were used as substrate for sphingomyelinase of rat brain. The dependence of the rate of hydrolysis on the concentration of sphingomyelin was measured in two ways: at a fixed concentration of Triton X-100 or at varying concentrations of this detergent, while maintaining a fixed molar ratio of Triton X-100 to sphingomyelin. In either case, the upsilon vs. S curves deviated from the hyperbolic shape predicted by the Michaelis-Menten kinetic theory. These deviations are discussed and interpreted on the basis of the physicochemical properties of the mixed dispersions of detergent and lipid studied in previous papers.  相似文献   

2.
The fatty acyl (lipid) p-nitrophenyl esters p-nitrophenyl caprylate, p-nitrophenyl laurate and p-nitrophenyl palmitate that are incorporated at a few mol % into mixed micelles with Triton X-100 are substrates for bovine milk lipoprotein lipase. When the concentration of components of the mixed micelles is approximately equal to or greater than the critical micelle concentration, time courses for lipoprotein lipase-catalyzed hydrolysis of the esters are described by the integrated form of the Michaelis-Menten equation. Least square fitting to the integrated equation therefore allows calculation of the interfacial kinetic parameters Km and Vmax from single runs. The computational methodology used to determine the interfacial kinetic parameters is described in this paper and is used to determine the intrinsic substrate fatty acyl specificity of lipoprotein lipase catalysis, which is reflected in the magnitude of kcat/Km and kcat. The results for interfacial lipoprotein lipase catalysis, along with previously determined kinetic parameters for the water-soluble esters p-nitrophenyl acetate and p-nitrophenyl butyrate, indicate that lipoprotein lipase has highest specificity for the substrates that have fatty acyl chains of intermediate length (i.e. p-nitrophenyl butyrate and p-nitrophenyl caprylate). The fatty acid products do not cause product inhibition during lipoprotein lipase-catalyzed hydrolysis of lipid p-nitrophenyl esters that are contained in Triton X-100 micelles. The effects of the nucleophiles hydroxylamine, hydrazine, and ethylenediamine on Km and Vmax for lipoprotein lipase catalyzed hydrolysis of p-nitrophenyl laurate are consistent with trapping of a lauryl-lipoprotein lipase intermediate. This mechanism is confirmed by analysis of the product lauryl hydroxamate when hydroxylamine is the nucleophile. Hence, lipoprotein lipase-catalyzed hydrolysis of lipid p-nitrophenyl esters that are contained in Triton X-100 micelles occurs via an interfacial acyl-lipoprotein lipase mechanism that is rate-limited by hydrolysis of the acyl-enzyme intermediate.  相似文献   

3.
A kinetic scheme is proposed for the action of cobra venom phospholipase A2 on mixed micelles of phospholipid and the nonionic detergent Triton X-100, based on the "dual phospholipid model." (formula; see text) The water-soluble enzyme binds initially to a phospholipid molecule in the micelle interface. This is followed by binding to additional phospholipid in the interface and then catalytic hydrolysis. A kinetic equation was derived for this process and tested under three experimental conditions: (i) the mole fraction of substrate held constant and the bulk substrate concentration varied; (ii) the bulk substrate concentration held constant and the Triton X-100 concentration varied (surface concentration of substrate varied); and (iii) the Triton X-100 concentration held constant and the bulk substrate concentration varied. The substrates used were chiral dithiol ester analogs of phosphatidylcholine (thio-PC) and phosphatidylethanolamine (thio-PE), and the reactions were followed by reaction of the liberated thiol with a colorimetric thiol reagent. The initial binding (Ks = k1/k-1) was apparently similar for thio-PC and thio-PE (between 0.1 and 0.2 mM) as were the apparent Michaelis constants (Km = (k-2 + k3)/k2) (about 0.1 mol fraction). The Vmax values for thio-PC and thio-PE were 440 and 89 mumol min-1 mg-1, respectively. The preference of cobra venom phospholipase A2 for PC over PE in Triton X-100 mixed micelles appears to be an effect on k3 (catalytic rate) rather than an effect on the apparent binding of phospholipid in either step of the reaction.  相似文献   

4.
用响应面法对Burkholderiasp.SYBCLIP—Y液体发酵产低温脂肪酶的发酵条件进行了快速优化。首先利用Plackett—Burman设计对影响其产酶相关因素进行评估并筛选出具有显著效应的三个因素:牛肉膏,橄榄油,TritonX-100;用最陡爬坡路径逼近最大产酶区域后,利用响应面中心组合设计对显著因素进行优化,确定出牛肉膏,橄榄油,TritonX-100的最佳浓度分别为:牛肉膏31.8g/L、橄榄油21mL/L、TritonX-10036.55mL/L,优化后脂肪酶的酶活达到61.52U/mL,是优化前的2.62倍。  相似文献   

5.
A simple and specific method for assaying lipoprotein lipase activity is described. Postheparin plasma, heart homogenates, or extracts of acetone powder of adipose tissue were incubated with a triolein-coated Celite substrate, and enzyme activity was determined from the rate of free fatty acid (FFA) release in the incubation system. FFA release was linear for 30 min, and was proportional to protein concentration in the incubation system. FFA release was decreased by addition of deoxycholate or Triton X-100. Increasing the concentration of heparin in the incubation system caused a gradual decrease in FFA release by postheparin plasma and increases in activity of heart homogenates and adipose tissue lipoprotein lipase. The Celite substrate was found to be satisfactory for assaying pancreatic lipase activity as well.  相似文献   

6.
Mixed dispersions of sphingomyelin and Triton X-100 were prepared by two procedures. In method A, aqueous dispersions of sphingomyelin were mixed with aqueous solutions of Triton X-100. In method B, solutions of sphingomyelin and Triton X-100 in organic solvent were mixed, the solvent was evaporated and the dry residue was dispersed in buffer. Measurement of turbidities, electron microscopy and sedimentation of the mixed dispersions suggested the following: Below the critical micellar concentration of Triton X-100, the sphingomyelin is present as liposomes which sediment in the ultracentrifuge. Above the CMC, mixed micelles of sphingomyelin and Triton form. Method B resulted in aggregates of sphingomyelin which contain Triton X-100 even below its critical micellar concentration and which are smaller than those obtained by method A.  相似文献   

7.
Purification and characterization of endogenous lipid factors that stimulate rat liver lysosomal lipase has led to the identification of cardiolipin, phosphatidylserine, and phosphatidic acid as stimulators of this activity. Bovine heart cardiolipin (half-maximal stimulation at 1.5 x 10(-4) m) and bovine brain phosphatidylserine (half-maximal stimulation at 9.5 x 10(-4) m) were the most potent of the phospholipids from other sources tested. The major rate-enhancing effect of phosphatidylserine is expressed as a 35-fold increase in the apparent V(max) of the enzyme. The effect is produced by acid phospholipids specifically, since in no case was there greater than a twofold stimulation by synthetic detergents, zwitterionic phospholipids, taurocholic acid, or gum acacia. The observed degree of stimulation depends upon the detergent used to disperse tripalmitin substrate and the relative concentrations of factor and detergent in reaction mixtures. The concentration of phosphatidylserine to produce half-maximal stimulation is directly dependent upon the Triton X-100 concentration, but the effects of this detergent on cardiolipin stimulation are more complex. Enzyme activity is inhibited 50% by 1 mm nucleoside triphosphate and 2.5 mm ADP, 80% by 1 mm PP(i), 100% by 20 U/ml heparin and 0.25 mg/ml chondroitin sulfate, and 80% by 10 mm sulfate ion. Inhibition is partially prevented by phosphatidylserine.  相似文献   

8.
A lipase was partially purified from the almond (Amygdalus communis L.) seed by ammonium sulfate fractionation and dialysis. Kinetics of the enzyme activity versus substrate concentration showed typical lipase behavior, with K(m) and V(max) values of 25 mM and 113.63 micromol min(-1) mg(-1) for tributyrin as substrate. All triglycerides were efficiently hydrolyzed by the enzyme. The partially purified almond seed lipase (ASL) was stable in the pH range of 6-9.5, with an optimum pH of 8.5. The enzyme was stable between 20 and 90 degrees C, beyond which it lost activity progressively, and exhibited an optimum temperature for the hydrolysis of soy bean oil at 65 degrees C. Based on the temperature activity data, the activation energy for the hydrolysis of soy bean oil was calculated as -5473.6 cal/mol. Soy bean oil served as good substrate for the enzyme and hydrolytic activity was enhanced by Ca(2+), Fe(2+), Mn(2+), Co(2+), and Ba(2+), but strongly inhibited by Mg(2+), Cu(2+), and Ni(2+). The detergents, sodiumdeoxicholate and Triton X-100 strongly stimulated enzyme activity while CTAB, DTAB, and SDS were inhibitors. Triton X-405 had no effect on lipase activity. The partially purified enzyme retained its activity for more than 6 months at -20 degrees C, beyond which it lost activity progressively.  相似文献   

9.
Based on amino-terminal sequencing and mass spectrometry data on the Rhizopus homothallicus lipase extracted using solid (SSF) and submerged state fermentation (SmF) methods, we previously established that the two enzymes were identical. Differences were observed, however, in terms of the specific activity of these lipases and their inhibition by diethyl p-nitrophenyl phosphate (E600). The specific activity of the SSF lipase (10,700 μmol/min/mg) was found to be 1.2-fold that of SmF lipase (8600 μmol/min/mg). These differences might be the result of residual Triton X-100 molecules interacting with the SSF lipase. To check this hypothesis, the SmF lipase was incubated with submicellar concentrations of Triton X-100. The specific activity of the lipase increased after this treatment, reaching similar values to those measured with the SSF lipase. Preincubating SSF and SmF lipases with E600 at a molar excess of 100 for 1 h resulted in 80% and 60% enzyme inhibition levels, respectively. When the SmF lipase was preincubated with Triton X-100 for 1 h at a concentration 100 times lower than the Trition X-100 critical micellar concentration, the inhibition of the lipase by E600 increased from 60% to 80%. These results suggest that residual detergent monomers interacting with the enzyme may after the kinetic properties of the Rh. homothallicus lipase.  相似文献   

10.
Hydrolysis of lipid mixtures by rat hepatic lipase   总被引:1,自引:0,他引:1  
The hydrolysis of phospholipid mixtures by purified rat hepatic lipase, also known as hepatic triglyceride lipase, was studied in a Triton X-100/lipid mixed micellar system. Column chromatography of the mixed micelles showed elution of Triton X-100 and binary lipid mixtures of phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine as a single peak. This indicated that the mixed micelles were homogenous and contained all components in the designated molar ratios. The molar ratio of Triton X-100 to lipid was kept constant at 4 to 1. Labeling one lipid with 3H and the other lipid with 14C enabled us to determine the hydrolysis of both components of these binary lipid mixed micelles. We found that the hydrolysis of phosphatidylcholine was activated by the inclusion of small amounts of phosphatidic acid (2.5-fold), phosphatidylethanolamine (1.5-fold) or phosphatidylserine (1.4-fold). The maximal activation of phosphatidylcholine hydrolysis was observed when 5 mol% of phosphatidylethanolamine, 7.5 mol% phosphatidic acid or 5 mol% phosphatidylserine was added to Triton X-100 mixed micelles. The hydrolysis of phosphatidic acid was activated 30%, and that of phosphatidylserine was inhibited 30% when the molar proportion of phosphatidylcholine was less than 50 mol%. The hydrolysis of phosphatidylethanolamine was slightly activated when the mol% of phosphatidylcholine was below 5. The hydrolysis of phosphatidylserine was inhibited by phosphatidylethanolamine when the mol% of the latter was 50 or less whereas phosphatidylethanolamine hydrolysis was not affected by phosphatidylserine. Under the conditions used sphingomyelin and cholesterol did not have a significant effect on the hydrolysis of the phospholipids studied. In agreement with our previous study (Kucera et al. (1988) J. Biol. Chem. 263, 1920-1928) these studies show that the phospholipid polar head group is an important factor which influences the action of hepatic lipase and that the interfacial properties of the substrate play a role in the expression of the activity of this enzyme. The molar ratios of phosphatidic acid, phosphatidylethanolamine and phosphatidylserine which activated phosphatidylcholine hydrolysis correspond closely to the molar ratios of these lipids found in the surface lipid film of lipoproteins e.g., high density lipoproteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
12.
The lipolytic activities of heart tissue towards full and partial acylglycerols were characterized. Tissue lysosomal, acid lipase activity (pH 4.8) was inhibited by high salt, protamine sulfate, NaF, MgATP, Triton X-100, serum and the esterase-inhibitor diethylparanitrophenyl phosphate. The tissue neutral triacylglycerol lipase activity (pH 7.4) was recovered predominantly in the microsomal and soluble fractions and exhibited essentially identical properties towards activators (serum, apolipoprotein C-II) and reagents (NaCl, Triton X-100, NaF, MgATP and diethylparanitrophenyl phosphate) relative to vascular lipoprotein lipase, except for protamine sulfate which increased the serum-stimulated neutral triacylglycerol lipase activity. Triacylglycerol hydrolysis at acid pH was incomplete, whereas at neutral pH full hydrolysis occurred. Myocardial mono- and diacylglycerol lipase activities, with pH optima of 8.0 and 7.4, respectively, were recovered in the microsomal fraction. They differed immunologically from neutral lipase and lipoprotein lipase and did not bind to heparin-Sepharose 4B. They were kinetically different, partially inhibited by NaCl and differentially affected by protamine sulfate. NaF, Triton X-100 and diethylparanitrophenyl phosphate. Our data suggest that endogenous hydrolytic activity against full and partial acylglycerols is mediated by separate enzymes.  相似文献   

13.
We have examined the hydrolysis of the synthetic phosphodiesters, bis(4-methylumbelliferyl)phosphate and hexadecanoyl(nitrophenyl)phosphorylcholine, by purified placental sphingomyelinase (sphingomyelin cholinephosphohydrolase, EC 3.1.4.12) in the presence of Triton X-100. Triton X-100 enhanced activity with bis(4MU)phosphate at all concentrations tested. At very low concentrations of detergent, bis(4MU)phosphate hydrolysis approached zero. Our results indicate that bis(4MU)phosphate does not form a micelle with Triton X-100. The observed enhancement of bis(4MU)phosphate activity with Triton X-100 is likely due to a direct effect of detergent on the enzyme itself. HDNP-phosphorylcholine formed its own micelle (or liposome) in the absence of Triton X-100 and, at substrate concentrations below 4 mM, hydrolysis was inhibited by Triton X-100. The extent of this inhibition varied with detergent concentrations but could be totally eliminated at substrate values above 4 mM. For theoretical reasons kinetic constants which could be obtained with the HDNP-phosphorylcholine substrate at concentrations above 4 mM are not considered to be truly representative of the real values. We conclude that neither substrate is recommended to describe the true kinetic parameters pertaining to purified sphingomyelinase. In addition, bis(4MU)phosphate may not be suitable as an aid for diagnosis of sphingomyelinase deficiency states.U  相似文献   

14.
A fluorescent derivative of glucosyl ceramide was synthesized by covalently linking a fluorescent fatty acid, 12-[N-methyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)] aminododecanoic acid to the amino group of sphingosyl-1-O-beta-D-glucoside, glucosyl sphingosine. For hydrolysis by glucocerebrosidase, this substrate was dispersed in mixed micelles with Triton X-100 and sodium taurocholate or in unilamellar liposomes with phosphatidylcholine and the negatively charged lipid, dicetylphosphate. In either micellar or liposomal dispersions of the fluorescent substrate, reaction rates were linear with time and protein concentration, and saturation kinetics were observed. The rate of hydrolysis of this fluorescent substrate was equal to that obtained with radiolabeled glucosyl ceramide. The fluorescent glucosyl ceramide was used to determine glucocerebrosidase activity in extracts of human leukocytes, cultured skin fibroblasts, and various tissues as well as in partially purified splenic and placental glucocerebrosidase preparations. This fluorescent derivative of the natural substrate was not hydrolyzed by aryl beta-glucosidase(s), thereby facilitating the specific and reliable diagnosis of heterozygotes and homozygotes with Gaucher disease.  相似文献   

15.
Reaction characteristics of a membrane-bound lipoprotein lipase acting on a hydrophobic substrate were investigated in aggregated structures—lipid bilayers of liposomes and mixed micelles of Triton X-100. The enzyme activity was enhanced with increases in Triton X-100 and phospholipid concentrations in micellar and liposomal structures. This higher activity was found to be due to both the solubilization state of the hydrophobic substrate and the hydrophobic interactions of the enzyme with either phospholipid or Triton X-100 molecules as a result of its incorporation into the aggregated systems. The enzyme reconstituted into lipid bilayers of liposomes prepared from 15 mM DMPC in the presence of 0.05% Triton X-100 showed a further 1.5-fold higher activity in comparison with the activity without reconstitution in micelles of 1.0% Triton X-100. These results indicate the necessity of the bilayer structure to retain the membrane-bound enzyme in an active conformation.  相似文献   

16.
The hydrolysis of palm oil and beef tallow by lipase has been studied for practical applications in a biphasis isooactane-aqueous system using a high substrate concentration. The effective lipase concentration for the hydrolysis was found to be about 120 IU per g of substrate. The addition of twenty percent isooctane brought about the most rapid reaction and produced the highest percentage of hydrolysis. For both palm oil and beef tallow, a percentage of hydrolysis higher than 98% was achieved in the 20% isooctane system at a higher concentration of 50%. However, when the substrate concentration was higher than 50%, the final value of hydrolysis decreased as the concentration of the substrate increased. Utilization of recycled lipase was attempted using an ultrafiltration membrane reactor. Approximately 60$% of the lipase activity was recoverable after each reaction.  相似文献   

17.
The action of two lysophospholipases purified from beef liver on lysophosphatidylcholine in microsomal membranes has been studied. Enzyme I, which has been shown to be localized in the soluble fraction of the beef liver cell, has a higher specific activity on microsomal lysophosphatidylcholine than Enzyme II, which originates from the microsomal cell fraction. This trend is also observed with phosphatidylcholine liposomes and single bilayer vesicles in which lysophosphatidylcholine has been incorporated. At low mol fractions of lysophosphatidylcholine in liposomes, the maximum enzymatic rate is proportional to this mol fraction. Similar results are obtained with mixed micelles of lysophosphatidylcholine and Triton X-100. The results are explained in terms of a model in which the two-dimensional substrate density in the membrane surface controls the rate of enzyme action.  相似文献   

18.
The hydrolysis of monoacylglycerol and diacylglycerol by rat brain microsomes was followed by measuring the release of glycerol and monooleylglycerol from dispersions of water insoluble glyceryl esters of oleic acid. The microsomes showed three lipolytic activities. One activity, optimal at pH 4.8, catalyzed the hydrolysis of diacylglycerol but not monoacylglycerol. Two other lipolytic activities, optimal at pH 8.0-8.6, catalyzed the hydrolysis of both diacylglycerol and monoacylglycerol. The pH 8.0-8.6 activities were sensitive to heat and SH-reagents. Detergents were inhibitory in all cases. Extraction of the microsomes with KCl, KSCN, urea or Triton X-100 did not change the ratio of diacylglycerol hydrolysis at pH 4.8 and 8.0. The results of subcellular fractionation studies showed that there was no significant enrichment of the acid lipase in any fraction.  相似文献   

19.
Rabbit antiserum was prepared against purified bovine mild lipoprotein lipase. Immunoelectrophoresis of lipoprotein lipase gave a single precipitin line against the antibody which was coincident with enzyme activity. The gamma-globulin fraction inhibited heparin-releasable lipoprotein lipase activity of bovine arterial intima, heart muscle and adipose tissue. The antibody also inhibited the lipoprotein lipase activity from adipose tissue of human and pig, but not that of rat and dog. Fab fragments were prepared by papain digestion of the gamma-globulin fraction. Fab fragments inhibited the lipoprotein lipase-catalyzed hydrolysis of dimyristoylphosphatidylcholine vesicles and trioleoylglycerol emulsions to the same extent. The Fab fragments also inhibited the lipolysis of human plasma very low density lipoproteins. The change of the kinetic parameters for the lipoprotein lipase-catalyzed hydrolysis of trioleoylglycerol by the Fab fragments was accompanied with a 3-fold increase in Km and a 10-fold decrease in Vmax. Preincubation of lipoprotein lipase with apolipoprotein C-II, the activator protein for lipoprotein lipase, did not prevent inhibition of enzyme activity by the Fab fragments. However, preincubation with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol or Triton X-100-emulsified trioleoylglycerol had a protective effect (remaining activity 7.0 or 25.8%, respectively, compared to 1.0 or 0.4% with no preincubation). The addition of both apolipoprotein C-II and substrate prior to the incubation with the Fab fragments was associated with an increased protective effect against inhibition of enzyme activity; remaining activity with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol was 40.6% and with Triton X-100-emulsified trioleoylglycerol, 45.4%. Human plasma very low density lipoproteins also protected against the inhibition of enzyme activity by the Fab fragments. These immunological studies suggest that the interaction of lipoprotein lipase with apolipoprotein C-II in the presence of lipids is associated with a conformational change in the structure of the enzyme such that the Fab fragments are less inhibitory. The consequence of a conformational change in lipoprotein lipase may be to facilitate the formation of an enzyme-triacylglycerol complex so as to enhance the rate of the lipoprotein lipase-catalyzed turnover of substrate to products.  相似文献   

20.
A two-cycle immunoprecipitation procedure is described that markedly reduces nonspecific protein contamination occurring during the precipitation of hepatic lipase from rat H4 hepatoma cells. In this method, the precipitation of immune complexes during both cycles is achieved by utilizing a sodium dodecyl sulfate (SDS)-washed preparation of lyophilized Staphylococcus aureus cells (Staph A); this washed preparation effectively removes Staph A contaminants without compromising the ability to bind immune complexes. Following initial immunoprecipitation of the antigen, the Staph A/IgG/antigen complex containing coprecipitated nonspecific proteins was dissociated with SDS. Triton X-100 was added to the dissociated immunoprecipitate at a concentration (by weight) of at least 5 parts Triton X-100 to 1 part SDS. A second cycle of immunoprecipitation was then initiated by addition of fresh antibody, followed by Staph A precipitation of immune complexes and analysis by SDS-polyacrylamide gel electrophoresis. The two-cycle procedure is shown to be reproducible and suitable for the quantitative determination of relative amounts of hepatic lipase. The procedure described here is generally applicable to the immunoprecipitation of other antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号