首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: A simple, rapid method is presented for the determination of acetylcholine (ACh) and choline (Ch) in neuronal tissue using HPLC with electrochemical detection. The method is based on the separation of ACh and Ch by reverse-phase HPLC and mixing the effluent as it emerges from the column with acetylcholinesterase and Ch oxidase, which converts endogenous Ch and Ch produced by the hydrolysis of ACh to betaine and hydrogen peroxide. Production of hydrogen peroxide is continuously monitored electrochemically. The sensitivity of the procedure is 1 pmol for Ch and 2 pmol for ACh. Specificity of the method is based on HPLC, two specific enzymatic reactions, and the detection of hydrogen peroxide.  相似文献   

2.
A method for the simultaneous determination of bile acids in rat liver tissue by high-performance liquid chromatography was developed. Without prior fractionation and alkaline hydrolysis, 30 unconjugated, glycine- and taurine-conjugated bile acids were detected by post-column enzymatic reaction and fluorescence detection. They were separated on a reversed-phase column using a linear gradient solvent system of 10 mM tribasic ammonium phosphate–acetonitrile–methanol (44:12:5, v/v/v) and 20 mM dibasic ammonium phosphate–acetonitrile–methanol (2:1:2, v/v/v). The limits of detection were 1–5 pmol, and calibration curves were linear for concentrations ranging between 10 and 4000 pmol per 10 μl injection. This rapid and reliable method is effective for measuring bile acid levels in liver tissue not only of rats but also of patients with hepatobiliary and other diseases.  相似文献   

3.
A generic continuous-flow assay for phosphate-consuming or -releasing enzymes coupled on-line to liquid chromatography (LC) has been developed. Operating the LC-biochemical assay in combination with mass spectrometry allows the fast detection and identification of inhibitors of these enzymes in complex mixtures. The assay is based on the detection of phosphate, released by the on-line continuous-flow enzymatic reaction, using a fluorescent probe. The probe consists of fluorophore-labeled phosphate-binding protein, which shows a strong fluorescence enhancement upon binding to inorganic phosphate. To detect very small changes of the phosphate concentration in a postcolumn enzymatic reaction medium, the enzymatic removal of phosphate impurities from solvents, reagents, and samples was optimized for application in continuous flow. The potential of the phosphate probe is demonstrated by monitoring the enzymatic activity, i.e., the phosphate release, from alkaline phosphatase. The selectivity of the phosphate readout, necessary to distinguish between phosphate containing substrate or product and free inorganic phosphate released after enzymatic conversion, is shown. The applicability of LC coupled to the enzymatic assay using the phosphate readout was demonstrated by detection of tetramisole in a plant extract as inhibitor of alkaline phosphatase. Parallel mass spectrometry allowed the simultaneous confirmation of the identity of the inhibitor.  相似文献   

4.
Flow-injection enzymatic analysis for glycerol and triacylglycerol   总被引:2,自引:0,他引:2  
A flow-injection enzymatic analytical system was developed for determination of glycerol and triacylglycerol based on enzymatic reactions in capillary followed by electrochemical detection. The hydrogen peroxide produced from the enzyme reaction was monitored by a platinum-based electrochemical probe. Different immobilization strategies on silica support were studied. The best and most effective configuration found for the measurement of glycerol and triacylglycerols in this system was the tandem connection of a lipase column and a silica-fused capillary column coimmobilized with glycerokinase (GK) and glycerol-3-phosphate oxidase (GPO). Lipase helps the breakdown of triacylglycerol to yield free fatty acids and glycerol, while glycerokinase catalyzes the adenosine-5-triphosphate-dependent phosphorylation of glycerol to yield alpha-glycerol phosphate, which can subsequently be oxidized by 3-glycerol phosphate oxidase to produce hydrogen peroxide. Response-surface methodology (RSM) was applied to optimize the proposed system for glycerol. Experiment settings were designed by central composite design to investigate the combined effects of pH, flow rate, reaction temperature, and ATP concentration on collected signals. The fitted model, per RSM, showed that the optimum conditions of the system are 2 mM ATP in 0.1 M carbonate buffer (pH 11.0), flow rate of 0.18 mL/min, temperature of 35 degrees C, 20 microL of sample injection, and applied voltage of 0.650 V. The proposed biosensing system using lipase, GK, and GPO exhibited a flow-injection analysis peak response of 2.5 min and a detection limit of 5 x 10(-5) M glycerol (S/N = 3) with acceptable reproducibility (CV < 4.30%). It also had linear working ranges from 10(-4) to 10(-2) M for glycerol and from 10(-3) to 10(-2) M for triacylglycerol. The capillary enzyme reactor was stable up to 2 months in continuous operation, and it was possible to analyze up to 15 samples per hour. The present biosensing system holds promise for on-line detection of triacylglycerol in serum and glycerol content in fermented products.  相似文献   

5.
A sensitive method for the assay of sparteine oxidase activity in vitro by microsomal fractions of human liver is described. The activity of sparteine oxidase was assessed by the formation of 2- and 5-dehydrosparteines, which were estimated by capillary gas chromatography with N2-FID detection. The limit of detection of the two metabolites, 2- and 5-dehydrosparteine, was 10 pmol (2.3 ng) per sample. Sparteine oxidase activity was linear with microsomal protein concentration ranging from 25 to 200 ug and with incubation times between 5 and 60 minutes. Omission of NADPH on incubation under an atmosphere of carbon monoxide inhibited formation of both metabolites, thus indicating that aforementioned metabolites arise in reaction catalyzed by cytochrome P-450. In three liver samples from humans classified as extensive (EM) metabolizers the formation of 2- and 5-dehydrosparteines was observed, 2-dehydrosparteine being the major metabolite. In these samples sparteine oxidase activity was characterised by Vmax = 136 +/- 53 pmol/min/mg and Km = 44 +/- 12 microM for 2-dehydrosparteine formation. For 5-dehydrosparteine formation the following values were obtained: Vmax = 57 +/- 18 pmol/min/mg and Km = 42 +/- 26 microM. In a liver sample from a poor metabolizer (PM) only the formation of 2-dehydrosparteine was detected with the method of analysis used. In this sample a great increase in Km (Km PM = 3033 microM) was noted, while Vmax was very similar to those obtained for 2-dehydrosparteine formation in EM subjects (Vmax PM = 147 pmol min/mg).  相似文献   

6.
A sensitive, new enzymatic method for the detection of isozymes which liberate inorganic phosphate (or pyrophosphate) is described. The new method for the detection of phosphate differs from the established method for nucleoside phosphorylase by the substitution of one reagent. The new enzymatic method, compared to existing methods for the detection of phosphate on electrophoretic gels, is advantageous due to its sensitivity and generation of a nondiffusible formazan chromogenic product.  相似文献   

7.
An enzymatic biosensor was fabricated by the covalent immobilization of pyruvate oxidase (PyO) onto the nano-particle comprised poly-5,2':5',2'-terthiophene-3'-carboxylic acid, poly-TTCA (nano-CP) layers on a glassy carbon electrode (GCE) for the amperometric detection of the phosphate ions. The direct electron transfer reaction of the immobilized PyO onto the nano-CP layers was investigated and the electron transfer rate constant was determined to be 0.65 s(-1). The electrochemically prepared nano-CP lowered the oxidation potential (+0.40 V versus Ag/AgCl) of an enzymatically generated H(2)O(2) by PyO in a phosphate solution. Experimental parameters affecting the sensitivity of the biosensors, such as amounts of the cofactors, the pH, the applied potential, and the temperature were optimized. A linear response for the detection of the phosphate ion was observed between 1.0 microM and 100 microM and the detection limit was determined to be about 0.3 microM. The response time of the biosensors was about 6s. The biosensor showed good selectivity towards other interfering anions. The long-term storage stability of the phosphate biosensor was studied and the sensor was applied in a human serum sample for the phosphate ions detection.  相似文献   

8.
A sensitive and selective method for the simultaneous determination of acetylcholine (ACh) and choline (Ch) is reported. ACh and Ch were separated on a reversed-phase column, passed through an immobilized enzymes (acetylcholine esterase and choline oxidase) column, and converted to hydrogen peroxide. The generated hydrogen peroxide was detected by the peroxyoxalate chemiluminescence reaction. The linear determination ranges were from 10 pmol to 10 nmol. The detection limit for both cholines was 1 pmol.  相似文献   

9.
The ability to acquire structurally informative daughter ion spectra for individual peptides undergoing separation and analysis by continuous flow fast atom bombardment (CF FAB) is demonstrated. To illustrate the potential of this methodology, tryptic and chymotryptic digests of the 29-residue peptide glucagon were analyzed by CF FAB using mass spectrometric and tandem mass spectrometric detection in consecutive analyses. Daughter ion spectra were recorded using B/E linked scans for the major hydrolysis products observed by liquid chromatography/mass spectrometry. The peptide mixtures were separated by gradient capillary high-performance liquid chromatography with the FAB matrix being added post-column using a coaxial flow interface between the column and flow probe. The entire effluent (3 microl min(-1)) was sampled by the mass spectrometer. Results obtained using less than 300 pmol of digested glucagon indicated several advantages to tandem mass spectrometric detection including the ability to confirm identities for products of enzymatic digestion and the potential use of this method for tandem sequence analysis of peptide mixtures.  相似文献   

10.
A flow injection analysis (FIA) biosensor system for the determination of phosphate was constructed using immobilized nucleoside phosphorylase and xanthine oxidase and an amperometric electrode (platinum vs silver/silver chloride, polarized at 0.7 V). When a phosphate-containing sample was injected into the detection cell, phosphate reacted with inosine in the carrier buffer to produce hypoxanthine and ribose-1-phosphate in the presence of nucleoside phosphorylase. Hypoxanthine was then oxidized by xanthine oxidase to uric acid and hydrogen peroxide, which were both detected by the amperometric electrode. The response of the FIA biosensor system was linear up to 100 microM phosphate, with a minimum detectable concentration of 1.25 microM phosphate. Each assay could be performed in 5-6 min and the system could be used for about 160 repeated analyses. This system was applicable for the determination of phosphate in various food products and plasma, and the results obtained agreed well with those of the enzymatic assay.  相似文献   

11.
A sensitive method was developed for the simultaneous determination of six adenyl purines in human plasma by high-performance liquid chromatography. The adenyl purines (adenine, adenosine, AMP, ADP, ATP and cyclic AMP) were derivatized using 2-chloroacetaldehyde for fluorescence detection, and the reaction and separation conditions were reinvestigated to improve sensitivity for small volume sample analysis. Each derivatized purine was separated on a Capcell Pack SG120A™ column with mobile phase consisting of 0.05 M citric acid–0.1 M dipotassium hydrogen phosphate (pH 4.0)–methanol (97+3). The detection limits were 100–1000 fmol/ml by fluorescence detection, some 500 times better than previous reports. The proposed method was applied to determine adenyl purines in human plasma. The purine levels were as follows: ATP (9.2–22.2 pmol/ml), ADP (5.5–22.2 pmol/ml), AMP (0.8–3.2 pmol/ml). Other purines, adenine, adenosine, cAMP were lower than 0.1 pmol/ml.  相似文献   

12.
A method for determination of picomolar quantities of acetylcholine and choline in solutions and tissue extracts is described. The analytes are injected into a continuous stream of a simple medium flowing through a sequence of enzyme reactors containing acetylcholinesterase, choline oxidase, and peroxidase. Additional reactors with choline oxidase and catalase are used to remove endogenous choline from the tissue extracts in which the content of acetylcholine is to be measured. Reaction products are detected fluorometrically or luminometrically. The limits of sensitivity are about 10 pmol/sample with luminometric and 0.2 pmol/sample with fluorometric detection.  相似文献   

13.
An enzymatic fluorometric assay for pyridoxal with pyridoxal dehydrogenase was developed. The detection limit was about 10 pmol: the calibration curve of pyridoxal showed high linearity (r=0.993). The values obtained by this method correlated well with those by the HPLC method. The enzyme had a high specificity for pyridoxal, and thus animal samples could be directly analyzed without separation of pyridoxal 5'-phosphate by column chromatography.  相似文献   

14.
An enzymatic fluorometric assay for pyridoxal with pyridoxal dehydrogenase was developed. The detection limit was about 10 pmol: the calibration curve of pyridoxal showed high linearity (r=0.993). The values obtained by this method correlated well with those by the HPLC method. The enzyme had a high specificity for pyridoxal, and thus animal samples could be directly analyzed without separation of pyridoxal 5′-phosphate by column chromatography.  相似文献   

15.
Visfatin, also known as extracellular pre-B-cell colony-enhancing factor (PBEF) and nicotinamide phosphoribosyltransferase (Nampt), is an adipocytokine whose circulating levels are enhanced in metabolic disorders, such as type 2 diabetes mellitus and obesity. Circulating visfatin levels have been positively associated with vascular damage and endothelial dysfunction. Here, we investigated the ability of visfatin to directly impair vascular reactivity in mesenteric microvessels from both male Sprague-Dawley rats and patients undergoing non-urgent, non-septic abdominal surgery. The pre-incubation of rat microvessels with visfatin (50 and 100 ng/mL) did not modify the contractile response to noradrenaline (1 pmol/L to 30 μmol/L), as determined using a small vessel myograph. However, visfatin (10 to 100 ng/mL) concentration-dependently impaired the relaxation to acetylcholine (ACh; 100 pmol/L to 3 μmol/L), without interfering with the endothelium-independent relaxation to sodium nitroprusside (1 nmol/L to 3 μmol/L). In both cultured human umbilical vein endothelial cells and rat microvascular preparations, visfatin (50 ng/mL) stimulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, as determined by lucigenin-derived chemiluminiscence. The relaxation to ACh impaired by visfatin was restored by the NADPH oxidase inhibitor apocynin (10 μmol/L). Additionally, the Nampt inhibitor APO866 (10 mmol/L to 10 μmol/L), but not an insulin receptor-blocking antibody, also prevented the stimulation of NADPH oxidase and the relaxation impairment elicited by visfatin. Accordingly, the product of Nampt activity nicotinamide mononucleotide (100 nmol/L to 1 mmol/L) stimulated endothelial NADPH oxidase activity and concentration-dependently impaired ACh-induced vasorelaxation. In human mesenteric microvessels pre-contracted with 35 mmol/L potassium chloride, the endothelium-dependent vasodilation to bradykinin (1 nmol/L to 3 μmol/L) was equally impaired by visfatin and restored upon co-incubation with APO866. In conclusion, visfatin impairs endothelium-dependent relaxation through a mechanism involving NADPH oxidase stimulation and relying on Nampt enzymatic activity, and therefore arises as a potential new player in the development of endothelial dysfunction.  相似文献   

16.
An amperometric biosensor was constructed for analysis of human salivary phosphate without sample pretreatment. The biosensor was constructed by immobilizing pyruvate oxidase (PyOD) on a screen-printed electrode. The presence of phosphate in the sample causes the enzymatic generation of hydrogen peroxide (H(2)O(2)), which was monitored by a potentiostat and was in proportion to the concentration of human salivary phosphate. The sensor shows response within 2s after the addition of standard solution or sample and has a short recovery time (2 min). The time required for one measurement using this phosphate biosensor was 4 min, which was faster than the time required using a commercial phosphate testing kit (10 min). The sensor has a linear range from 7.5 to 625 microM phosphate with a detection limit of 3.6 microM. A total of 50 salivary samples were collected for the determination of phosphate. A good level of agreement (R(2)=0.9646) was found between a commercial phosphate testing kit and the phosphate sensor. This sensor maintained a high working stability (>85%) after 12h operation and required only a simple operation procedure. The amperometric biosensor using PyOD is a simple and accurate tool for rapid determinations of human salivary phosphate, and it explores the application of biosensors in oral and dental research and diagnosis.  相似文献   

17.
Sensitive staining methods with wheat germ agglutinin were developed for the detection of glycosphingolipids of neolacto series (A) and gangliosides with a terminal N-acetylneuraminyl residue (B) on thin-layer chromatograms. (A) Neolacto series glycosphingolipids were treated by beta-galactosidase on the chromatograms in the presence of taurodeoxycholate. Then the chromatograms were incubated with biotinated wheat germ agglutinin followed by incubation with a complex of avidin and biotinated horseradish peroxidase, and the reaction was detected by 4-chloro-1-naphthol. In the case of gangliosides, sialidase treatment on the chromatograms was performed before the beta-galactosidase treatment. The sensitivity of the method for Lc3Cer, nLc4Cer, sialyl-nLc4Cer, and sialyl-nLc6Cer was 4 pmol, 7.6 pmol, 2.9 pmol and 1.4 pmol, respectively. (B) The gangliosides on the chromatograms were oxidized by periodic acid and reduced by NaBH4. Then the chromatograms were stained with wheat germ agglutinin as mentioned above. As little as 0.5 pmol of GM3, NeuAc-nLc4Cer, and NeuAc-nLc6Cer was detected by this method, whereas the detected limits for these gangliosides were 10 pmol, 10 pmol and 2 pmol, respectively, when periodate oxidation was omitted. GM4, GD3 and GD1a were an order less reactive than GM3, GM2, GM1 or GD1b were not stained under the same condition. In contrast to NeuAc-containing gangliosides, any gangliosides with N-glycolylneuraminic acid were not stained by the method in (B).  相似文献   

18.
In this work, we developed a novel enzymatic method for measuring phosphatidic acid (PA) in cultured cells. The enzymatic reaction sequence of the method involves hydrolysis of PA to produce glycerol-3-phosphate (G3P), which is then oxidized by G3P oxidase to generate hydrogen peroxide. In the presence of peroxidase, hydrogen peroxide reacted with Amplex Red to produce highly fluorescent resorufin. We found that lipase from Pseudomonas sp. can completely hydrolyze PA to G3P and FAs. The calibration curve for PA measurement was linear between 20 and 250 µM, and the detection limit was 5 µM (50 pmol in the reaction mixture). We also modified the method for the enzymatic measurement of lysophosphatidic acid. By this new method, we determined the PA content in the lipid extract from HEK293 cells. The cellular content of PA was decreased with increasing cell density but not correlated with the proliferation rate. The diacylglycerol kinase inhibitor R59949 markedly reduced the cellular PA content, suggesting the diacylglycerol kinase activity was involved in a large part of the PA production in HEK293 cells. This novel method for PA quantification is simple, rapid, specific, sensitive, and high-throughput and will help to study the biological functions of PA and its related enzymes.  相似文献   

19.
Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase was studied. The K(m)-value for lactose, obtained by a traditional enzymatic assay, was 0.066 mM at pH 6.4 and 38 degrees C. The effect of oxygen on the enzymatic rate of reaction as well as the operational stability of the enzyme was studied by performing reactions at constant pH and temperature in a stirred tank reactor. Catalase was included in all reactions to avoid inhibition and deactivation of the oxidase by hydrogen peroxide. At pH 6.4 and 38 degrees C, K(m) for oxygen was 0.97 mM, while the catalytical rate constant, k(cat), was 94 s(-1). Furthermore, we found that the operational stability of the oxidase was dependent on the type of base used for neutralization of the acid produced. Thus, when 2 M NaOH was used for neutralization of a reaction medium containing 50 mM phosphate buffer, significant deactivation of the oxidase was observed. Also, we found that the oxidase was protected against deactivation by base at high lactose concentrations. A simple model is proposed to explain the obtained results.  相似文献   

20.
A new enzymatic method has been developed for the determination of inorganic phosphate, in which purine nucleoside phosphorylase and xanthine oxidase are used as indicator enzymes. This method has been applied to the assay of nucleoside diphosphatase. Incidental to this work, the apparent Michaelis constant of phosphate for calf spleen purine nucleoside phosphorylase was determined to be 0.25 mm, and the extinction coefficient of uric acid at 293 nm and pH 7.4 was found to be 13.0 × 103m?1 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号