首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of low-intensity extrahigh-frequency (EHF) electromagnetic radiation (EMR) on the duration of a pain behavioral reaction in rats under conditions of experimental induction of tonic pain (formalin test). The antinociceptive effect of EHF irradiation was modulated by suppression of the activity of a few neurochemical systems resulting from the blockade of receptors of opioid peptides, α-and β-adrenoreceptors, receptors of dopamine and melatonin, as well as from inhibition of serotonin synthesis. We demonstrated that all the respective neurochemical systems are to a certain extent involved in the mechanisms underlying the analgesic action of EHF EMR. Within an early phase of pain stress, functioning of the opioidergic and noradrenergic systems and the effects of melatonin play leading roles, while the activity of the serotonergic system plays such a role within the second (tonic) phase. Neirofiziologiya/Neurophysiology, Vol. 39, No. 2, pp. 165–173, March–April, 2007.  相似文献   

2.
We studied modifications of motor asymmetry in rats with different motor lateralization (dextrals, sinistrals, and ambidextrals) induced by low-intensity extra high-frequency (EHF) electromagnetic radiation (EMR), hypokinetic stress, and their combination. It was found that the development of hypokinetic stress in rats induced by limitation of their mobility results in a considerable decrease of the coefficient of motor asymmetry (up to inversion of its sign); this can be related to a decrease in the resistivity to stressing and adaptability of the organism to the influence of external factors. The influence of EHF EMR on the animals under conditions of both normal and limited motor activity resulted in an increase in the index of motor lateralization in animals of all phenotypic groups under study; probably, this helped to increase the adaptive capabilities of the organism. Neirofiziologiya/Neurophysiology, Vol. 37, No. 2, pp. 164–168, March–April, 2005.  相似文献   

3.
We studied the effect of low-intensity extrahigh-frequency (EHF) electromagnetic radiation (EMR) on changes of behavior phenomena in rats observed under conditions of experimentally induced tonic somatic, visceral, and acute thermal pain. Preliminary irradiation of the animals with EHF EMR was found to exert clear antinociceptive effects. Decreases in the intensity of pain reactions were observed under conditions of both single and repeated irradiation sessions. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 331–341, July–August, 2006.  相似文献   

4.
Hypokinetic stress-induced modifications of behavioral reactions recorded under conditions of the open-field test were studied in rats. Animals with different profiles of motor asymmetry demonstrated significant individual typological specificity of behavior. Experimental 9-day-long restriction of mobility caused clearly pronounced changes in behavioral and emotional reactions in the animals; manifestations of such changes depended significantly on motor lateralization.  相似文献   

5.
The dynamics of leukocyte number and functional activity of peripheral blood neutrophils under whole-body exposure of healthy mice to low-intensity extremely-high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.15 mW/cm2, 20 min daily) was studied. It was shown that the phagocytic activity of peripheral blood neutrophils was suppressed by about 50% (p < 0.01 as compared with the sham-exposed control) in 2-3 h after the single exposure to EHF EMR. The effect persisted for 1 day after the exposure, and then the phagocytic activity of neutrophils returned to the norm within 3 days. A significant modification of the leukocyte blood profile in mice exposed to EHF EMR for 5 days was observed after the cessation of exposures: the number of leukocytes increased by 44% (p < 0.05 as compared with sham-exposed animals), mostly due to an increase in the lymphocyte content. The supposition was made that EHF EMR effects can be mediated via the metabolic systems of arachidonic acid and the stimulation of adenylate cyclase activity, with subsequent increase in the intracellular cAMP level. The results indicated that the whole-body exposure of healthy mice to low-intensity EHF EMR has a profound effect on the indices of nonspecific immunity.  相似文献   

6.
We examined the modifying effect of hypokinetic stress on the duration of behavioral phenomena in rats under conditions of experimentally induced tonic somatic, visceral, acute thermal, and electrostimulation-evoked pain. Stress of the above type (hypokinetic) was found to modify the pain sensitivity in rats related to all tested types of pain stresses of different etiology. Changes in the pain sensitivity of the animals under conditions of experimental pain tests depended on the duration of mobility restriction and could demonstrate opposite directions. Neirofiziologiya/Neurophysiology, Vol. 39, No. 2, pp. 174–183, March–April, 2007.  相似文献   

7.
The effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.1 mW/cm2, 20 min daily) on cell-mediated immunity and nonspecific inflammatory response in mice was studied. The intensity of cell-mediated immune response in the reaction of delayed-type hypersensitivity and nonspecific inflammation was estimated by a relative increase in the thickness of foot pad after immunization of animals by sheep red blood cells or zymosan. It was shown for the first time that the radiation reduces both immune and nonspecific inflammatory responses. It was shown with the use of models of acute inflammation and full-thickness skin wounds that EHF EMR suppresses the nonspecific inflammatory response but does not influence the duration of the pathological process. We suppose that the basis of the effects revealed is the modification of functional activity of phagocytic cells under the influence of EHF EMR. The results suggest that some therapeutic effects of EHF EMR can be realized via the inhibition of inflammatory processes.  相似文献   

8.
Using a comet assay technique, it was shown for the first time that low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) in vivo causes oppositely directed effects on spatial organization of chromatin in cells of lymphoid organs. In 3 hrs after single whole-body exposure of NMRI mice for 20 min at 42.0 GHz and 0.15 mW/cm2, an increase by 16% (p < 0.03 as compared with control) and a decrease by 16% (p < 0.001) in fluorescence intensity of nucleoids stained with ethidium bromide were found in thymocytes and splenocytes, respectively. The fluorescence intensity of stained nucleoids in peripheral blood leukocytes was not changed after the exposure. The exposure of cells of Raji hunan lymphoid line and peripheral blood leukocytes to the EHF EMR in vitro induced a decrease in fluorescence intensity by 23% (p < 0.001) and 18% (p < 0.05), respectively. These effects can be determined by changes in a number of physiological alkali-labile sites in DNA of exposed cells. We suggested that the effects of low-intensity EHF EMR on the immune system cells are realized with the participation of neuroendocrine and central nervous systems.  相似文献   

9.
The antiinflammatory effect of low-intensity extremely-high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.1 mW/cm2) was studied in comparison to the effects of the antiinflammatory drug sodium diclofenac and the antihistamine clemastine in acute inflammatory reaction in mice of NMRI outbred stock. The local inflammatory reaction was induced by intraplantar injection of zymosan to the left hind paw. Intraperitoneal injections of 2, 3, 5, 10, and 20 mg/kg of sodium diclofenac or 0.02, 0.1, 0.2, 0.4, and 0.6 mg/kg of clemastine were made 30 min after the initiation of inflammation. An hour after the initiation of inflammation, animals were whole-body exposed to EHF EMR for 20 min. The inflammatory reaction was assessed 3–8 h after initiation by measuring the footpad edema and hyperthermia of the inflamed paw. Sodium diclofenac (5–20 mg/kg) reduced the exudative edema by ~26% compared to the control. Hyperthermia of the inflamed paw decreased by 60% with an increase in the diclofenac dose to 20 mg/kg. EHF EMR reduced both the footpad edema and hyperthermia by ~20%. This was comparable to the effect of a single therapeutic dose of diclofenac (3–5 mg/kg). The combination of diclofenac and exposure to EHF EMR produced a partial additive effect. Clemastine (0.02–0.4 mg/kg) did not affect the exudative edema, but at a dose of 0.6 mg/kg, edema was reduced by 14–22% five to eight hours after zymosan injection. Clemastine caused a dose-dependent increase in hyperthermia of inflamed paw at doses 0.02–0.2 mg/kg and did not affect the hyperthermia at doses 0.4 and 0.6 mg/kg. A combination of clemastine and EHF EMR exposure resulted in a dose-dependent abolishment of the antiinflammatory effect of EHF EMR. Our results suggest that both arachidonic acid metabolites and histamine are involved in the achievement of the antiinflammatory effects of low-intensity EHF EMR.  相似文献   

10.
Using a model of acute zymosan-induced footpad edema in NMRI mice, the frequency and power dependence of anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) was found. Single whole-body exposure of animals to EHF EMR at the intensity of 0.1 mW/cm(2) for 20 min at 1 h after zymosan injection reduced both the footpad edema and local hyperthermia on average by 20% at the frequencies of 42.2, 51.8, and 65 GHz. Some other frequencies from the frequency range of 37.5-70 GHz were less effective or not effective at all. At fixed frequency of 42.2 GHz and intensity of 0.1 mW/cm(2), the effect had bell-shaped dependence on exposure duration with a maximum at 20-40 min. Reduction of intensity to 0.01 mW/cm(2) resulted in a change of the effect dependence on exposure duration to a linear one. Combined action of cyclooxygenase inhibitor sodium diclofenac and EHF EMR exposure caused a partial additive effect of decrease in footpad edema. Combined action of antihistamine clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that arachidonic acid metabolites and histamine are involved in realization of anti-inflammatory effects of low-intensity EHF EMR.  相似文献   

11.
We studied suppression of pain-related reactions induced in mice by i.p. injection of 0.08 ml of a 2% solution of acetic acid using pharmacological analgesics (analgin and tramadol) combined with low-intensity microwave irradiation of an acupuncture point (AP) E-36 (frequency 30 to 300 GHz and power rate density 3·10−9 W/cm2). The respective effects were also observed under conditions of suppression of the functions of opioid and serotonergic cerebral systems using injections of, respectively, naloxone and DL-p-chlorophenylalanine (p-CPA). We found that antinociceptive effects provided by analgesics used in a 50% mean single dose in the combination with microwave irradiation of the AP were significantly more intense than those induced by isolated injection of analgesics used in both 50% and full mean single doses and isolated microwave irradiation of the AP E-36. After injections of naloxone, analgesic effects caused by the combined action of analgin and microwave irradiation of the AP were considerably smaller. At the same time, after injection of p-CPA, analgesic effects, provided by the combination of injection of pharmacological agents and microwave irradiation of the AP, weakened in the case of use of both analgesics. This was manifested in a significant increase in the total duration of pain-related behavioral reactions. Therefore, the studied analgesic effects observed in the examined animal groups are realized due to the involvement of the opioid and serotonergic cerebral systems. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 468–477, November–December, 2007.  相似文献   

12.
Chuyan  E. N. 《Neurophysiology》2004,36(1):22-23
We studied changes in the interhemisphere asymmetry of the intensity of lipid peroxidation (LPO) and total content of thiol groups (TTG) in the rat cerebral neocortex. These indices characteristic for animals with different motor phenotypes (dextrals, sinistrals, and ambidextrals) were measured in the control and under the influence of hypokinesia, low-intensity millimeter-range electromagnetic radiation (mmR EMR), and their combination. The development of hypokinetic stress in rats (after 10-day-long motor restriction) resulted in a sharp activation of LPO and suppression of thiol/disulfide metabolism in the neocortex of rats with different types of motor asymmetry. Hypokinesia was accompanied by considerable drops in the coefficients of interhemisphere asymmetry (up to reversal of their signs); this can be related to decreases in the resistivity of the organism to stress and adaptability to external influences. When intact animals with different types of motor asymmetry were irradiated with mmR EMR, the intensity of LPO in the neocortex of both hemispheres decreased concurrently with intensification of thiol/ disulfide metabolism. The combined influence of hypokinesia and mmR EMR led to considerably smaller shifts in the above indices, as compared with those after isolated action of hypokinesia. When mmR EMR influenced animals were kept under conditions of normal motor mode and motor restriction, the signs of the coefficients of asymmetry of the indices under study did not change, while the intensity of interhemisphere asymmetry increased. We suppose that this is related to an increase in the adaptability of the organism to the action of stressor factors.  相似文献   

13.
The anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.1 mW/cm2) was compared with the action of the known anti-inflammatory drug sodium diclofenac and the antihistamine clemastine on acute inflammatory reaction in NMRI mice. The local inflammatory reaction was induced by intraplantar injection of zymosan into the left hind paw. Sodium diclofenac in doses of 2, 3, 5, 10, and 20 mg/kg or clemastine in doses of 0.02, 0.1, 0.2, 0.4, and 0.6 mg/kg were injected intraperitoneally 30 min after the initiation of inflammation. The animals were whole-body exposed to EHF EMR for 20 min at 1 h after the initiation of inflammation. The inflammatory reaction was assessed over 3 - 8 h after the initiation by measuring the footpad edema and hyperthermia of the inflamed paw. Sodium diclofenac in doses of 5 - 20 mg/kg reduced the exudative edema on the average by 26% as compared to the control. Hyperthermia of the inflamed paw decreased to 60% as the dose of was increased diclofenac up to 20 mg/kg. EHF EMR reduced both the footpad edema and hyperthermia by about 20%, which was comparable with the effect of a single therapeutic dose of diclofenac (3 - 5 mg/kg). The combined action of diclofenac and the exposure to the EHF EMR caused a partial additive effect. Clemastine in doses of 0.02-0.4 mg/kg it did not cause any significant effects on the exudative edema, but in a dose of 0.6 mg/kg it reduced edema by 14 - 22% by 5 - 8 h after zymosan injection. Clemastine caused a dose-dependent increase in hyperthermia of inflamed paw at doses of 0.02-0.2 mg/kg and did not affect the hyperthermia at doses of 0.4 and 0.6 mg/kg. The combined action of clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that both arachidonic acid metabolites and histamine are involved in the realization of anti-inflammatory effects of low-intensity  相似文献   

14.
Chuyan  E. N.  Temur'yants  N. A.  Chirskii  N. V. 《Neurophysiology》2003,35(2):108-117
We examined the ability of low-intensity millimeter-range (mmR) electromagnetic radiation (EMR) to modify the functional activity of the sympathoadrenal system (SAS) and the behavioral reactions in intact rats and rats with an experimentally induced stress reaction. Adaptation of the organism to mmR EMR has been shown to limit SAS activation; this is considered one of the mechanisms of the antistressor effect of such radiation.  相似文献   

15.
Under conditions of the formalin test, we studied changes in the level of analgesia induced by the action of low-intensity microwaves on the antinociceptive acupuncture point (AP) E36 in mice of strains CBA/CaLac (CBA) and C57BL/6j (C57) and in albino mongrel mice. Measurements were performed under control conditions and with experimentally induced decrease in the serotonin level in the brain (by injections of DL-parachlorophenylalanine, p-CPA). In the latter cases, the duration of the pain behavioral reaction increased despite irradiation of the AP E36. In mongrel, CBA, and C57 mice, the intensity of pain manifestations was 114.4, 29.0, and 21.1% greater, respectively, than in mice of these groups with no injections of p-CPA. These facts show that the serotonergic brain system is profoundly involved in the formation of analgesia after irradiation of the AP by low-intensity microwaves, and this involvement significantly depends on the genotype of the animals. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 495–497, September–December, 2006.  相似文献   

16.
We studied behavioral manifestations of analgesic effects induced in mice by irradiation of the E36 acupuncture point (AcP) by low-intensity microwaves under conditions of visceral pain evoked by i.p. injections of 0.08 ml of a 2% solution of acetic acid. We also examined changes in these analgesic effects resulting from a drop in the level of serotonin after i.p. injection of 300 mg/kg of a blocker of synthesis of serotonin, DL-parachlorophenylalanine (PChPhA). Two modes of irradiation were tested, with a wide frequency range (30 to 300 GHz) and amplitude modulation (mode 1) and with a stable frequency (61 ± ± 4 GHz, mode 2). Irradiation in mode 1 provided a higher level of analgesia than that in mode 2 (decreases in the duration of manifestations of the pain reaction were, on average, 35.7 and 20.4%, respectively). The level of analgesia dropped after injections of PChPhA; the durations of behavioral pain manifestations 24 h after such injections were greater than those in the group with no injections of the blocker by 41.3 and 12.1% in irradiation modes 1 and 2, respectively. The respective figures 48 h after PChPhA injections were 52.0 and 16.1%. Thus, under conditions of visceral pain, irradiation of the AcP by low-intensity microwaves provides noticeable analgesia, and the serotonergic brain system mediates the development of analgesia under the above-mentioned conditions. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 250–256, May–June, 2005.  相似文献   

17.
Under conditions of the open-field test, we demonstrated that bemitil and benzimidazole injected intraperitoneally into rats in doses of 50 to 150 mg/kg suppress horizontal and vertical (motor and research) activities, as well as decrease the frequencies of episodes of grooming, defecation, and urination. Possible mechanisms underlying modifications of behavioral phenomena triggered by the above agents are discussed. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 85–90, January–February, 2006  相似文献   

18.
We analyzed background impulse activity of neurons of the supraoptic nucleus of the rat hypothalamus in the course of 15-day-long isolated action of generalized vibrational stimulation and combination of such stimulation with irradiation of the animal’s head with low-intensity extrahigh-frequency (EHF, millimeter-range) electromagmetic waves. The distributions of the neurons by the level of regularity and dynamics of spike trains, separate frequency ranges of impulsation, and pattern of interspike interval (ISI) histograms were estimated. We also calculated the mean frequency of discharges and coefficient of variation of ISIs. A trend toward decreases in the deviations of some parameters of neuronal spike activity generated by supraoptic neurons, which were evident within early time intervals of isolated action of vibration (5 to 10 days), was observed under the influence of EHF electromagnetic irradiation; thus, the latter factor probably exerts a sedative effect. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 433–442, November–December, 2007.  相似文献   

19.
The present study evaluated the regulatory role of nitric oxide (NO) in stress susceptibility and adaptation in rats. Acute restraint stress (RS x1) reduced the number of entries and time spent in the open arms in the elevated plus maze (EPM) test and raised plasma corticosterone levels. RS (x1)-induced neurobehavioral suppression and raised corticosterone levels were attenuated by pretreatment with the NO precursor, L-arginine (500 and 1000 mg/kg)and unaffected or further aggravated by NO synthase inhibitor, L-NAME or 7-nitroindazole (10 and 50 mg/kg). Biochemical assay of plasma and brain homogenates showed that these RS - induced behavioral and neuroendocrinal changes were associated with lowered levels of plasma and brain total nitrates/nitrites (NOx). L-Arginine attenuated the RS-induced suppression of NOx levels in plasma and brain, whereas, the NO synthase inhibitors tended to produce reverse effects. In the experiments involving repeated stress i.e. RS (x5), exposure resulted in attenuation/reversal of (a) neurobehavioral suppression in the EPM test and (b) lowered brain NOx, that was seen after RS (x1). The RS (x5)-induced changes in EPM parameters and brain Nox were further potentiated after L-arginine pretreatment, whereas, the NO synthase inhibitors were less effective. Rats were screened as high and low emotional in the open-field test, and high emotional rats showed greater(a) behavioral suppression in the EPM, (b) corticosterone responses (c) brain NOx suppression, and (d) cold-restraint stress (CRS) induced gastric mucosal lesions as compared to their low emotional counterparts. L-Arginine pretreatment was more effective in modulating the above RS induced stress responses/markers in the high emotional group of rats. Our data suggest that NO plays a differential role during exposure to acute and repeated stress situations, and that the relationship between stress and emotionality status may be under the regulatory influence of NO.  相似文献   

20.
Low-intensity of electromagnetic radiation of extremely high frequencies (EHF EMR) is effectively used in medical practice for diagnostics, prevention and treatment of a broad spectrum of diseases of different etiology. However, in spite of existence of many hypotheses about mechanisms of EHF EMR effects on the molecular and cellular levels of organization of living systems, there is not conception that could explain all diversity of the EHF-therapy effects from unified approach. In our opinion, the problem of determination of mechanisms of EHF EMR effects on living organism is divided into two basic tasks: first, determining subcellular structures which can receive radiation, and, second, studying physiological reactions of the organism which are caused by radiation. It is obviously, that investigation of functions of single cells and subcellular elements can not entirely explain therapeutic effects and mechanisms of EHF EMR influence on multicellular organism on the whole. Plenty of functional relationships between organs and systems of organs should be taken into account. In the present review, a realization of the EHF-therapy effects due to the influence on immune system functions and start of system mechanisms of maintenance of the homeostasis on the organism level is hypothesized. Potential targets for EHF EMR acception on the level of different systems of the organism are analysed. The material is formed so that functional relations between immune system and other regulatory systems (nervous and endocrine systems) are traced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号