首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
NF-kappa B activity is regulated by its association with the inhibitory I kappa B proteins, among which I kappa B alpha and I kappa B beta are the most abundant. I kappa B proteins are widely expressed in different cells and tissues and bind to similar combinations of NF-kappa B proteins. The degradation of I kappa B proteins allows nuclear translocation of NF-kappa B and hence plays a critical role in NF-kappa B activation. Previous studies have demonstrated that, although both I kappa B proteins are phosphorylated by the same I kappa B kinase (IKK) complex, and their ubiquitination and degradation following phosphorylation are carried out by the same ubiquitination/degradation machinery, their kinetics of degradation are quite different. To better understand the underlying mechanism of the differences in degradation kinetics, we have carried out a systematic, comparative analysis of the ability of the IKK catalytic subunits to phosphorylate I kappa B alpha and I kappa B beta. We found that, whereas IKK alpha is a weak kinase for the N-terminal serines of both I kappa B isoforms, IKK beta is an efficient kinase for those residues in I kappa B alpha. However, IKK beta phosphorylates the N-terminal serines of I kappa B beta far less efficiently, thereby providing an explanation for the slower rate of degradation observed for I kappa B beta. Mutational analysis indicated that the regions around the two N-terminal serines collectively influence the relative phosphorylation efficiency, and no individual residue is critical. These findings provide the first systematic analysis of the ability of I kappa B alpha and I kappa B beta to serve as substrates for IKKs and help provide a possible explanation for the differential degradation kinetics of I kappa B alpha and I kappa B beta.  相似文献   

3.
Metastatic melanomas are typically resistant to radiation and chemotherapy. The underlying basis for this phenomenon may result in part from defects in apoptotic pathways. Nuclear factor kappa B (NFkappaB) has been shown to control apoptosis in many cell types and normally functions as an immediate stress response mechanism that is rigorously controlled by multiple inhibitory complexes. We have previously shown that NFkappaB binding is elevated in metastatic melanoma cells relative to normal melanocytes. In the current study, Western blot analysis showed that, compared with normal melanocytes, melanoma cell lines have higher nuclear levels of the NFkappaB subunits p50 (7-fold) and RelA (5-10-fold). In response to tumor necrosis factor-alpha (TNFalpha), both melanocytes and melanoma cells showed increased nuclear p50 and RelA levels, but levels in melanoma cells remained higher than in melanocytes. We also found that melanoma cells expressed higher cytoplasmic levels of RelA, p105/p50 and the inhibitory protein, inhibitor of kappa B alpha (IkappaBalpha) than melanocytes. To directly test whether RelA expression has an impact on melanoma cell survival, we used antisense RelA phosphorothioate oligonucleotides and found that melanoma cell viability was significantly decreased compared with untreated or control cultures. The constitutive activation of NFkappaB in metastatic melanoma cell cultures may, therefore, support an inappropriate cell survival pathway that can be therapeutically manipulated.  相似文献   

4.
5.
In vivo control of NF-kappa B activation by I kappa B alpha.   总被引:44,自引:8,他引:36       下载免费PDF全文
N R Rice  M K Ernst 《The EMBO journal》1993,12(12):4685-4695
  相似文献   

6.
7.
X-ray crystal structures of the NF-kappa B.I kappa B alpha complex revealed an extensive and complex protein-protein interface involving independent structural elements present in both I kappa B alpha and NF-kappa B. In this study, we employ a gel electrophoretic mobility shift assay to assess and quantitate the relative contributions of the observed interactions toward overall complex binding affinity. I kappa B alpha preferentially binds to the p50/p65 heterodimer and p65 homodimer, with binding to p50 homodimer being significantly weaker. Our results indicate that the nuclear localization sequence and the region C-terminal to it of the NF-kappa B p65 subunit is a major contributor to NF-kappa B. I kappa B alpha complex formation. Additionally, there are no contacts between the corresponding nuclear localization signal tetrapeptide of p50 and I kappa B alpha. A second set of interactions involving the acidic C-terminal/PEST-like region of I kappa B alpha and the NF-kappa B p65 subunit N-terminal domain also contributes binding energy toward formation of the complex. This interaction is highly dynamic and nonspecific in nature, as shown by oxidative cysteine cross-linking. Phosphorylation of the C-terminal/PEST-like region by casein kinase II further enhances binding.  相似文献   

8.
9.
Signal-induced degradation of I(kappa)B(alpha) via the ubiquitin-proteasome pathway requires phosphorylation on residues serine 32 and serine 36 followed by ubiquitination on lysines 21 and 22. We investigated the role of other regions of I(kappa)B(alpha) which may be involved in its degradation. Here we report that the carboxy-terminal PEST sequence is not required for I(kappa)B(alpha) signal-induced degradation. However, removal of the PEST sequence stabilizes free I(kappa)B(alpha) in unstimulated cells. We further report that a PEST deletion mutant does not associate well with NF-(kappa)B proteins but is degraded in response to signal. Therefore, we conclude that both association with NF-(kappa)B and a PEST sequence are not required for signal-induced I(kappa)B(alpha) degradation. Additionally, the PEST sequence may be required for constitutive turnover of free I(kappa)B(alpha).  相似文献   

10.
11.
We demonstrate here a novel role for the I kappa B kinase complex-associated protein (IKAP) in the regulation of activation of the mammalian stress response via the c-Jun N-terminal kinase (JNK)-signaling pathway. We cloned IKAP as a JNK-associating protein using the Ras recruitment yeast two-hybrid system. IKAP efficiently and specifically enhanced JNK activation induced by ectopic expression of MEKK1 and ASK1, upstream activators of JNK. Importantly, IKAP also enhanced JNK activation induced by ultraviolet light irradiation as well as treatments with tumor necrosis factor or epidermal growth factor. The JNK association site in IKAP was mapped to the C-terminal part of IKAP. Interestingly, this region is deleted from IKAP expressed in the autonomous nervous system of the patients affected by familial dysautonomia. Ectopic expression of this C-terminal fragment of IKAP was sufficient to support JNK activation. Taken together, our data demonstrate a novel role for IKAP in the regulation of the JNK-mediated stress signaling. Additionally, our results point to a role of JNK signaling in familial dysautonomia and, thus, further support the involvement of JNK signaling in the development, survival, and degeneration of the sensory and autonomic nervous system.  相似文献   

12.
13.
Signaling through the receptor activator of nuclear factor kappa B (RANK) is required for both osteoclast differentiation and mammary gland development, yet the extent to which RANK utilizes similar signaling pathways in these tissues remains unclear. Mice expressing a kinase-inactive form of the inhibitor of kappa B kinase alpha (IKK alpha) have mammary gland defects similar to those of RANK-null mice yet have apparently normal osteoclast function. Because mice that completely lack IKK alpha have severe skin and skeletal defects that are not associated with IKK alpha-kinase activity, we wished to directly examine osteoclastogenesis in IKK alpha(-/-) mice. We found that unlike RANK-null mice, which completely lack osteoclasts, IKK alpha(-/-) mice did possess normal numbers of TRAP(+) osteoclasts. However, only 32% of these cells were multinucleated compared with 57% in wild-type littermates. A more profound defect in osteoclastogenesis was observed in vitro using IKK alpha(-/-) hematopoietic cells treated with colony-stimulating factor 1 and RANK ligand (RANKL), as the cells failed to form large, multinucleated osteoclasts. Additionally, overall RANKL-induced global gene expression was significantly blunted in IKK alpha(-/-) cells, including osteoclast-specific genes such as TRAP, MMP-9, and c-Src. IKK alpha was not required for RANKL-mediated I kappa B alpha degradation or phosphorylation of mitogen-activated protein kinases but was required for RANKL-induced p100 processing. Treatment of IKK alpha(-/-) cells with tumor necrosis factor alpha (TNF alpha) in combination with RANKL led to partial rescue of osteoclastogenesis despite a lack of p100 processing. However, the ability of TNF alpha alone or in combination with transforming growth factor beta to induce osteoclast differentiation was dependent on IKK alpha, suggesting that synergy between RANKL and TNFalpha can overcome p100 processing defects in IKK alpha(-/-) cells.  相似文献   

14.
15.
16.
17.
18.
19.
J Inoue  L D Kerr  A Kakizuka  I M Verma 《Cell》1992,68(6):1109-1120
A cDNA corresponding to the 2.6 kb NF-kappa B mRNA species present in a variety of lymphoid cell lines has been molecularly cloned. The deduced 607 amino acid sequence is identical to the sequence of the C-terminal region of 110 kd NF-kappa B protein. A 70 kd protein can be identified in lymphoid cells using antibodies raised against the C-terminal region of p110 NF-kappa B. Comparison of the two-dimensional tryptic peptide maps of the 70 kd protein expressed in cells and the in vitro translated product encoded by the cDNA display extensive homology. The 70 kd protein expressed in bacteria prevents sequence-specific DNA binding of p50-p65 NF-kappa B heterodimer, p50 homodimer, and c-rel. p70 also interferes with transactivation by c-rel and prevents its nuclear translocation. The 70 kd protein, predominantly found in lymphoid cells, is a new member of the I kappa B family of proteins and is referred to as I kappa B gamma.  相似文献   

20.
Cellular retinoic acid binding protein I (CRABP-I) plays a role in retinoic acid (RA) metabolism or transport. This report shows specific neuronal expression of CRABP-I in adult transgenic mouse brain using CRABP-I promotor-driven lac-Z and neuron- and astrocyte-markers. Double staining indicates that CRABP-I is expressed in neurons and large cells (>12 microm) but to much lesser degree the astrocytes. CRABP-I-lac-Z(+) neurons were distributed throughout the brain, but in a very discreet pattern in each brain region. CRABP-I expression in specific populations of brain neurons suggests that RA is extensively metabolized in mature brains, mostly in neurons. Additionally, the genetic basis of its specific expression in these brain areas is located in the 5' regulatory region of this gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号