首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-molecular-mass O-specific polysaccharide was obtained by mild acid degradation of Proteus vulgaris O4 lipopolysaccharide followed by GPC. The polysaccharide was studied by chemical methods along with 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, NOESY, H-detected 1H,13C HMQC, and 1H,13C HMBC experiments. Solvolysis of the polysaccharide with trifluoromethanesulfonic (triflic) acid resulted in a GlcpA-(1 --> 3)-GlcNAc disaccharide and a novel amino sugar derivative, 4,6-dideoxy-4-[N-[(R)-3-hydroxybutyryl]-L-alanyl]amino-D-glucose [Qui4N(HbAla)]. On the basis of the data obtained, the following structure of the tetrasaccharide repeating unit of the O-specific polysaccharide was established: --> 4)-beta-D-GlcpA-(1 --> 3)-beta-D-GlcpNAc-(1 --> 2)-beta-D-Quip4N(HbAla)-(1 --> 3)-alpha-D-Galp-(1 -->. This structure is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied in a separate Proteus serogroup.  相似文献   

2.
The O-chain polysaccharide of the lipopolysaccharide from the bacterium Naxibacter alkalitolerans strain YIM 31775(T) was characterized. The structure was studied by means of chemical analysis and 2D NMR spectroscopy and shown to be built up by the following tetrasaccharide repeating unit: -->3)-alpha-D-FucpNAc-(1-->2)-beta-D-Quip3NHBu-(1-->2)-alpha-D-Rhap-(1-->)-beta-D-Galp-(1--> where HBu is hydroxy-butanoyl.  相似文献   

3.
The lipopolysaccharide of Plesiomonas shigelloides serotype O74:H5 (strain CNCTC 144/92) was obtained with the hot phenol/water method, but unlike most of the S-type enterobacterial lipopolysaccharides, the O-antigens were preferentially extracted into the phenol phase. The poly- and oligosaccharides released by mild acidic hydrolysis of the lipopolysaccharide from both phenol and water phases were separated and investigated by (1)H and (13)C NMR spectroscopy, MALDI-TOF mass spectrometry, and sugar and methylation analysis. The O-specific polysaccharide and oligosaccharides consisting of the core, the core with one repeating unit, and the core with two repeating units were isolated. It was concluded that the O-specific polysaccharide is composed of a trisaccharide repeating unit with the [-->2)-beta-d-Quip3NAcyl-(1-->3)-alpha-l-Rhap2OAc-(1-->3)-alpha-d-FucpNAc-(1-->] structure, in which d-Qui3NAcyl is 3-amino-3,6-dideoxy-d-glucose acylated with 3-hydroxy-2,3-dimethyl-5-oxopyrrolidine-2-carboxylic acid. The major oligosaccharide consisted of a single repeating unit and a core oligosaccharide. This undecasaccharide contains information about the biological repeating unit and the type and position of the linkage between the O-specific chain and core. The presence of a terminal beta-d-Quip3NAcyl-(1--> residue and the -->3)-beta-d-FucpNAc-(1-->4)-alpha-d-GalpA element showed the structure of the biological repeating unit of the O-antigen and the substitution position to the core. The -->3)-beta-d-FucpNAc-(1--> residue has the anomeric configuration inverted compared to the same residue in the repeating unit. The core oligosaccharide was composed of a nonphosphorylated octasaccharide, which represents a novel core type of P. shigelloides LPS characteristic of serotype O74. The similarity between the isolated O-specific polysaccharide and that found on intact bacterial cells and lipopolysaccharide was confirmed by HR-MAS NMR experiments.  相似文献   

4.
The structures of the carbohydrate O-specific side-chain moiety of the lipopolysaccharides (LPS) of Yokenella regensburgei, strains PCM 2476, 2477, 2478, and 2494, have been investigated by (1)H and (13)C NMR, fast atom bombardment tandem mass spectrometry (FAB-MSMS), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, methylation analysis, partial acid hydrolysis, and immunological methods. It was concluded that the O-specific polysaccharides of strains 2476, 2477, 2478, and 2494 are composed of the same basic trisaccharide repeating unit having the structure -->3)-alpha-D-FucpNAc-(1-->2)-L-alpha-D-Hepp-(1-->3)-6-deoxy -alpha-L- Talp-(1-->, in which L-alpha-D-Hepp is L-glycero-alpha-D-manno-heptopyranose. The detailed analysis revealed, however, differences in O-acetylation patterns of the 6-deoxy-L-talose residue, with 2- and 4-O-acetyl disubstituted -->3)-6-deoxy-alpha-L-Talp-(1--> in strain PCM 2476 and a 2-O-acetylated residue in strains 2477, 2478, and 2494. These structures represent novel, trisaccharide repeating units of bacterial O-antigens that are characteristic and unique to the Y. regensburgeispecies. By use of the high-resolution magic-angle spinning (HR-MAS) technique, (1)H NMR spectra of the O-polysaccharides directly in isolated LPS were obtained. This allowed for almost full assignment and structural determination of the polysaccharide. By this technique the O-polysaccharide components were also observed in their original form directly on the surface of living bacterial cells.  相似文献   

5.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

6.
The structure of the O-specific polysaccharide isolated by mild acid hydrolysis of the lipopolysaccharide of Mesorhizobium huakuii IFO15243T was studied using methylation analysis and various one- and two-dimensional 1H and 13C NMR experiments. The O-antigen polysaccharide was found to be linear polymer constituted by a trisaccharide repeating unit of the following structure: --> 2)-alpha-L-6dTalp-(1 --> 3)-alpha-L-6dTalp-(1 --> 2)-alpha-L-Rhap-(1 -->.  相似文献   

7.
An acidic O-specific polysaccharide was isolated from Hafnia alvei PCM 1196 lipopolysaccharide and studied by sugar and methylation analyses along with one- and two-dimensional 1H and 13C NMR spectroscopy, including NOESY and HMBC experiments. The following structure of the pentasaccharide repeating unit was established: -->4)-alpha-D-GalpA-(1-->3)-beta-D-GlcpNAc-(1-->2)-beta-D-Galp-(1-->6)-alpha-D-Glcp-(1-->6)-alpha-D-GlcpNAc-(1-->.  相似文献   

8.
The O-specific polysaccharide chain (O-antigen) of the lipopolysaccharide (LPS) of Providencia stuartii O49 was studied using sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, ROESY, H-detected 1H, 13C HSQC and HMBC experiments. The polysaccharide was found to have the trisaccharide repeating unit with the following structure: -->6)-beta-D-Galp(1-->3)-beta-D-GalpNAc(1-->4)-alpha-D-Galp(1-->  相似文献   

9.
Chemical and serological characterization of the Pseudomonas fluorescens IMV 2763 (biovar G) lipopolysaccharide was carried out. The O-specific polysaccharide chain of the lipopolysaccharide is composed of D-mannose, 6-deoxy-L-talose, N-acetyl-D-galactosamine and O-acetyl groups in the ratio of approximately 2:1:1:1. The polysaccharide is branched and a half of residues of 6-deoxytalose and monosubstituted mannose carry O-acetyl groups. On the basis of methylation, partial acid hydrolysis and 13C NMR analysis it was concluded that the repeating unit of the polysaccharide has the following structure: (formula; see text)  相似文献   

10.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus vulgaris O15 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY, and H-detected 1H,(13)C HMQC experiments. The polysaccharide was found to contain an ether of GlcNAc with lactic acid, and the following structure of the repeating unit was established:-->3)-alpha-D-GlcpNAc4(R-Lac)6Ac-(1-->2)-beta-D-GlcpA-(1-->3)-alpha-L-6dTalp2Ac-(1-->3)-beta-D-GlcpNAc-(1-->where L-6dTal and D-GlcNAc4(R-Lac) are 6-deoxy-L-talose and 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose, respectively. The latter sugar, which to our knowledge has not been hitherto found in nature, was isolated from the polysaccharide by solvolysis with anhydrous triflic acid and identified by comparison with the authentic synthetic compound. Serological studies with the Smith-degraded polysaccharide showed an importance of 2-substituted GlcA for manifesting of the immunospecificity of P. vulgaris O15.  相似文献   

11.
An O-specific polysaccharide was isolated from the lipopolysaccharide of a plant-growth-promoting bacterium Azospirillum brasilense Sp245 and studied by sugar analyses along with one- and two-dimensional 1H and 13C NMR spectroscopy, including NOESY. The polysaccharide was found to be a new rhamnan with a pentasaccharide repeating unit having the following structure:-->2)-beta-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->2)-alpha-D-Rhap-(1-->2)-alpha-D-Rhap-(1-->  相似文献   

12.
The O-specific polysaccharide of Proteus vulgaris O39 was found to contain a new acidic component of Proteus lipopolysaccharides, 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac). The following structure of the polysaccharide was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with selective cleavage of the polysaccharide by solvolysis with anhydrous trifluoromethanesulfonic (triflic) acid: -->8)-beta-Psep5Ac7Ac-(2-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D-GlcpNAc-(1--> The structure established is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied into a separate Proteus serogroup.  相似文献   

13.
A neutral O-specific polysaccharide (O-antigen) was isolated from the lipopolysaccharide (LPS) of the bacterium Proteus penneri 71. On the basis of sugar analysis and 1H- and 13C-NMR spectroscopic studies, including two-dimensional COSY, 13C,1H heteronuclear COSY and ROESY, the following structure of the trisaccharide repeating unit of the polysaccharide was established: -->3)-beta-D-GlcpNAc-(1-->4)-beta-D-GlcpNAc-(1-->3)-alpha-D-Galp-(1-- > The polysaccharide has the same carbohydrate backbone as the O-specific polysaccharide of P. penneri 19 and both are similar to that of P. penneri 62 studied by us previously. A cross-reactivity of anti-P. penneri 71, 19 and 62 O-antisera with 11 P. penneri strains was revealed and substantiated at the level of the O-antigen structures. These strains could be divided into three subgroups within a new proposed Proteus O64 serogroup containing P. penneri strains only.  相似文献   

14.
Lipopolysaccharide of Proteus penneri strain 63 was degraded by mild acid to give a high molecular mass O-specific polysaccharide that was isolated by gel-permeation chromatography. Sugar and methylation analyses and NMR spectroscopic studies, including two-dimensional 1H, 1H COSY, TOCSY rotating-frame NOE spectroscopy, H-detected 1H,13C and 1H,31P heteronuclear multiple-quantum coherence (HMQC), and 1H, 13C HMQC-TOCSY experiments, demonstrated the following structure of the polysaccharide: where FucNAc is 2-acetamido-2,6-dideoxygalactose and PEtn is 2-aminoethyl phosphate. The polysaccharide studied shares some structural features, such as the presence of D-GlcNAc6PEtn and an alpha-L-FucNAc-(1-->3)-D-GlcNAc disaccharide, with other Proteus O-specific polysaccharides. A marked cross-reactivity of P. penneri 63 O-antiserum with P. vulgaris O12 was observed and substantiated by a structural similarity of the O-specific polysaccharides of the two strains. In spite of this, the polysaccharide of P. penneri 63 has the unique structure among Proteus O-antigens, and therefore a new, separate serogroup, O68, is proposed for this strain.  相似文献   

15.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus vulgaris O46 and studied by chemical methods (O-deacetylation, sugar and methylation analyses, partial solvolysis) and 1H and 13C NMR spectroscopy. Solvolysis of the O-deacetylated polysaccharide with trifluoromethanesulfonic acid resulted in a alpha-D-GlcpNAc-(1 --> 3)-D-GlcA disaccharide that demonstrated the usefulness of this reagent for selective cleavage of heteropolysaccharides. The following structure for the polysaccharide was established: --> 4)-alpha-D-Glcp6Ac(1 --> 3)-beta-D-GlcpA4Ac-(1 --> 3)-alpha-D-GlcpNAc-(1 --> 3)-beta-D-GlcpA4Ac-(1 --> where the degree of O-acetylation is approximately 65% at position 6 of Glc and 80-95% at position 4 of GlcA residues.  相似文献   

16.
On the basis of chemical and methylation analyses, one- and two-dimensional (1)H- and (13)C-NMR spectroscopy, including COSY, TOCSY, NOESY and (1)H, (13)C HSQC experiments, a neutral O-specific polysaccharide isolated from Hafnia alvei strain PCM 1223 lipopolysaccharide (LPS) was found to be an alpha-mannan composed of pentasaccharide repeating units having the following structure:-->3)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->. Immunoblotting showed a strong cross-reactivity between anti-H. alvei PCM 1223 serum and LPSs of Escherichia coli O9 and Klebsiella pneumoniae O3. The serological relationship of the LPSs of these bacteria is due to the structural identity of their O-specific polysaccharides, though the LPSs differ in their core regions.  相似文献   

17.
A new glycosphingolipid, GSL-4B, was isolated from Sphingomonas adhaesiva and found to share the ceramide moiety with GSL-1 and GSL-3 from Sphingomonas capsulata studied earlier [Kawahara, K.; Moll, H.; Knirel, Y. A.; Seydel, U.; Z?hringer, U. Eur. J. Biochem. 2000, 267, 1837-1846]. It is heterogeneous with respect to the long-chain bases erythro-2-amino-1,3-octadecanediol (sphinganine), (13Z)-erythro-2-amino-13-eicosene-1,3-diol, and (13Z)-erythro-2-amino-13,14-methylene-1,3-eicosanediol which in GSL-4B are present in the ratios of 1.1:1.0:1.1, and all bearing amide-linked (S)-2-hydroxymyristic acid. Methylation analysis and MALDI-TOF-MS along with 1H and 13C NMR spectroscopy showed that the carbohydrate part of GSL-4B has the structure of alpha-D-Glcp-(1-->4)-alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->4)-alpha-D-GlcpA-(1-->1)-Cer  相似文献   

18.
Virtual screening, a fast, computational approach to identify drug leads [Perola, E.; Xu, K.; Kollmeyer, T. M.; Kaufmann, S. H.; Prendergast, F. G. J. Med. Chem.2000, 43, 401; Miller, M. A. Nat. Rev. Drug Disc.2002, 1 220], is limited by a known challenge in crystallographically determining flexible regions of proteins. This approach has not been able to identify active inhibitors of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) using solely the crystal structures of a SARS-CoV cysteine proteinase with a flexible loop in the active site [Yang, H. T.; Yang, M. J.; Ding, Y.; Liu, Y. W.; Lou, Z. Y. Proc. Natl. Acad. Sci. U.S.A.2003, 100, 13190; Jenwitheesuk, E.; Samudrala, R. Bioorg. Med. Chem. Lett.2003, 13, 3989; Rajnarayanan, R. V.; Dakshanamurthy, S.; Pattabiraman, N. Biochem. Biophys. Res. Commun.2004, 321, 370; Du, Q.; Wang, S.; Wei, D.; Sirois, S.; Chou, K. Anal. Biochem.2005, 337, 262; Du, Q.; Wang, S.; Zhu, Y.; Wei, D.; Guo, H. Peptides2004, 25, 1857; Lee, V.; Wittayanarakul, K.; Remsungenen, T.; Parasuk, V.; Sompornpisut, P. Science (Asia)2003, 29, 181; Toney, J.; Navas-Martin, S.; Weiss, S.; Koeller, A. J. Med. Chem.2004, 47, 1079; Zhang, X. W.; Yap, Y. L. Bioorg. Med. Chem.2004, 12, 2517]. This article demonstrates a genome-to-drug-lead approach that uses terascale computing to model flexible regions of proteins, thus permitting the utilization of genetic information to identify drug leads expeditiously. A small-molecule inhibitor of SARS-CoV, exhibiting an effective concentration (EC50) of 23 microM in cell-based assays, was identified through virtual screening against a computer-predicted model of the cysteine proteinase. Screening against two crystal structures of the same proteinase failed to identify the 23-microM inhibitor. This study suggests that terascale computing can complement crystallography, broaden the scope of virtual screening, and accelerate the development of therapeutics to treat emerging infectious diseases such as SARS and Bird Flu.  相似文献   

19.
The acidic extracellular polysaccharide of Ech6 was depolymerized by fuming HCl. The pyruvated sugars were isolated and characterized by methods that included a combination of low-pressure gel-filtration and high-pH anion-exchange chromatographies, methylation linkage analyses, mass (GC-MS and MALDI-TOF MS) and 1H NMR (1D and 2D) spectroscopies. The following pyruvated sugars were obtained: 4,6-O-(1-carboxyethylidene)-D-Galp; 4,6-O-(1-carboxyethylidene)- alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->3)-D-Galp; 4,6-O-(1-carboxyethylidene)-alpha-D-Galp-(1-->4)-alpha-D-GlcAp- (1-->3)-alpha-D-Galp-(1-->3)-L-Fucp; 4,6-O-(1-carboxyethylidene)-alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->3) -alpha-D-Galp-(1-->3)-L-[beta-D-Glcp-(1-->4)]-Fucp. These oligosaccharides present potential haptenes for the development of specific antibodies and confirm the partial structure proposed previously for the extracellular polysaccharide from Erwinia chrysanthemi Ech6 [Yang, B. Y.; Gray, J. S. S.; Montgomery, R. Int. J. Biol. Macromol., 1994, 16, 306-312].  相似文献   

20.
O-specific polysaccharide chain of the Pseudomonas fluorescens lipopolysaccharide is composed of 6-deoxy-L-talose, N-acetyl-D-fucosamine and N-acyl-3,6-dideoxy-D-glucose. Analysis of the latter sugar, obtained from the polysaccharide hydrolysate, by 1H NMR (including NOE), 13C NMR, and FAB mass spectrometry proved the unusual N-acyl substituent to be a 3-hydroxy-2,3-dimethyl-5-oxoproline residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号