首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of mutants derived from the temperate corynebacteriophages beta(tox+), gamma(tox-), and L(tox+) was isolated and characterized. In three-factor crosses between mutant beta phages the relative map order of the genetic markers determining extended host ranges (h and h') and loss of ability to lysogenize (c) was found to be h--c--h'. Recombination between markers was observed in matings between phage beta and the heteroimmune corynebacteriophages gamma and L. In such matings between heteroimmune phages the c markers of phages beta and gamma failed to segregate from the imm markers which determine the specificity of lysogenic immunity in these phages. The factor which directs the synthesis of diphtherial toxin during infection of appropriate corynebacterial hosts by toxinogenic corynebacteriophages is designated tox(+). It was possible to show that the tox(+) determinant of phage beta behaves as a single genetic element which occupies a position between the loci h and imm on the genetic map of this phage. Genetic recombination between mutants of phage beta occurred at very low frequencies in biparental matings performed by mixed infection of Corynebacterium diphtheriae C7(s)(-)(tox-). Considerably higher recombination frequencies were observed when lysogenic bacterial strains carrying one parental phage as prophage were induced by ultraviolet irradiation and then superinfected by the second parental phage. Maximal stimulation of genetic recombination between mutant beta phages was detected when superinfection followed ultraviolet irradiation of the lysogenic cells within a limited period of time. In matings between phages with incomplete genetic homology, the stimulation of recombination by ultraviolet radiation was much less effective.  相似文献   

2.
3.
Comparative studies with tox plus and tox minus corynebacteriophages   总被引:10,自引:2,他引:8       下载免费PDF全文
The characteristics of nine inducible temperate corynebacteriophages designated alpha(tox+), beta(tox+), P(tox+), gamma(tox-), pi(tox+), K(tox-), rho(tox-), L(tox+), and delta(tox+) have been compared. Virion morphology and ability to recombine genetically with the well-studied phage beta(tox+) have been correlated with other properties of the phages, and the distribution of the genetic marker tox+ among related and relatively unrelated corynebacteriophages has been analyzed. The immunity specificity, host range, and plaque morphology of each phage were determined. The phages can be separated into five groups with different immunity specificities. Each type of host range previously recognized in mutants of phage beta(tox+) was present in one or more of the phages included in the present study, and the phages were found to produce plaques of several different morphological types. Representative phages with each of the five types of immunity specificity were further characterized with respect to virion morphology, ability to recombine with phage beta(tox+), latent period, average burst size, and neutralization by homologous and heterologous antiphage sera. All of these phages have polyhedral heads and long slender tails, but two distinct morphological types were distinguished by the sizes and proportions of the components of the virions. Only phages of the same morphological type as beta(tox+) were capable of genetic recombination with beta(tox+), but morphological similarity between phages was not sufficient to insure interfertility. The phages which recombined with beta(tox+) resembled one another in plaque morphology, latent period, and average burst size, whereas phages which failed to recombine with beta(tox+) differed in these characteristics. The phages capable of genetic recombination with beta(tox+) were found to differ from each other in immunity specificity, host range, neutralization by antiphage sera, and toxinogenicity. Thus, these latter characteristics are of limited value in establishing the extent of relatedness between corynebacteriophages. The genetic marker tox+ was not consistently correlated with any other property of the corynebacteriophages analyzed in this study. The most striking finding regarding the distribution of the tox+ marker is its presence both in beta(tox+) and delta(tox+), phages which fail to recombine genetically and which differ in virion morphology. The presence of the tox+ marker in genetically unrelated corynebacteriophages poses many questions concerning the origin(s) of tox+ and the evolution of the phage-host interactions which determine the ability of corynebacteria to synthesize diphtherial toxin.  相似文献   

4.
Seventeen nontoxinogenic (tox) mutants of corynebacteriophage beta have been isolated by using a tissue culture screening technique. The mutants fall into four major classes. Two of the classes, I and II, appear to contain missense and nonsense mutants, respectively. However, classes III and IV have not been previously described. Class III mutants produce two proteins (CRMs) seriologically related to diphtheria toxin, but efforts to demonstrate the presence of more than one tox gene have been successful. Class IV mutants are phenotypically CRM-, failing to produce any detectable protein serologically related to diphtheria toxin. Genetic studies indicate that the mutations in class IV strains are not in a gene distinct form the structural gene for toxin, and that the CRM- strains retain at least a portion of that gene. A natural phage isolate, gamma, behaves in a completely parallel fashion to the class IV mutants. The production of tox+ recombinants through recombination of various pairs of tox phage mutants has been demonstrated. The implications of these findings for the natural history of diphtheria are discussed.  相似文献   

5.
Diphtherial toxin is produced in maximal yields by Corynebacterium diphtheriae (C7(beta tox+) only when iron is present in growth-limiting amounts. Toxin production is markedly decreased under high-iron conditions. We studied the role of the bacteriophage beta genome in this apparent regulation of toxin production by iron. Using a passive immune hemolysis assay to detect toxin antigen production in individual plaques, we identified rare phage mutants that were toxinogenic in high-iron medium. Lysogenic derivatives of C. diphtheriae C7 harboring such phage mutants were constructed. The lysogens were compared with wild-type strain C7(beta) for their ability to produce toxin in deferrated liquid medium containing varying amounts of added iron. Quantitative tests for extracellular toxin were performed by competitive-binding radioimmunoassays. We identified phenotypically distinct mutant strains that produced slightly, moderately, or greatly increased yields of toxin antigen under high-iron conditions. The toxin produced by the mutant lysogens was biologically active and immunochemically indistinguishable from wild-type toxin. Complementation experiments demonstrated that the phage mutation designated tox-201 had a cis-dominant effect on the expression of the toxin structural gene of phage beta. The characteristics of the tox-201 mutation suggest that it defines a regulatory locus of phage beta that is involved in control of toxinogenesis by iron in C. diphtheriae.  相似文献   

6.
The orientation of the gene for diphtheria toxin, tox, in the prophage of converting corynebacteriophage beta has been determined. The orientation of tox in prophage and that reported simultaneously by Holmes (1976) for vegetative phage are compatible with the hypothesis that beta phage is inserted into the chromosome of its bacterial host by means of a mechanism similar to that described for lambda phage, and that the phage attachment site lies between the tox and imm genes. The position of three tox mutations that are phenotypically CRM- has also been determined. Relative to the tox-45 mutation, they are located more proximally to the end of the tox structural gene that corresponds to the amino terminal of diphtheria toxin.  相似文献   

7.
The isolation and characterization of two different nonsense suppressor strains of Corynebacterium diphtheriae C7 sup+(-)tox- are described. Appropriate lysogens of these strains with corynephage beta, carrying known class II tox premature polypeptide chain termination mutations [C7sup-1(betatox-30) and C7sup-2(betatox-45)], each produce a 62,000-dalton polypeptide with nicotinamide adenine dinucleotide: elongation factor-2 adenosine diphosphate ribosyltransferase activity in addition to a chain-terminated polypeptide of 30,000 or 45,000 daltons, respectively. In addition, purified protein of 62,000 daltons, resulting from the suppression of the nonsense mutations tox-30 and tox-45, will react with antisera purified against the terminal 17,000 daltons of the toxin molecule and are immunologically identical to toxin by radial immunodiffusion. The suppression pattern of lysogenic derivatives of C7sup-1(-)tox- and C7sup-2(-)tox- with other class II and III mutants of corynephage beta was determined.  相似文献   

8.
Clear-plaque-forming mutant gamma tox- corynephages were isolated independently from nontoxigenic lysogenic Corynebacterium diphtheriae strains C7s(gamma tox-) and C4(gamma tox-). A physical map was constructed by using restriction endonucleases BamHI, EcoRI, HindIII, and KpnI. A comparison of nontoxigenic gamma c with toxigenic corynephage beta c revealed large areas of homology, including common regions for cohesive ends (cos) and attachment sites (att). Localization of the att sites on the beta prophage and correlation of the physical and genetic maps defined the orientation of the diphtheria tox operon. Diphtheria tox sequence homologies were mapped on gamma c by hybridizing 32P-labeled diphtheria tox mRNA to restriction fragments of gamma c DNA. Two regions of heterogeneity between phages beta c and gamma c were localized and these regions accounted for the 3-kilobase larger molecular size of gamma c compared with beta c. One change occurs near the tox promoter and may explain the nontoxigenic phenotype of corynephage gamma tox-.  相似文献   

9.
Phage beta 197tox-, which codes for CRM197, a nontoxic protein immunochemically indistinguishable from diphtheria toxin, was UV induced from a culture of the C7(beta 197)tox- strain. A total of 191 C7(beta 197)tox- lysogens were isolated and selected according to the halo produced on TYE agar containing antidiphtheria toxin serum and were further characterized by Southern blots of their chromosomal DNA. Most of the isolates turned out to be monolysogens, but some tandem and nontandem double lysogens were also found. The nontandem double lysogens were stable and capable of giving high yields of CRM197, up to threefold higher than monolysogens. They are, therefore, suitable for large-scale industrial production.  相似文献   

10.
Phage beta 197tox-, which codes for CRM197, a nontoxic protein immunochemically indistinguishable from diphtheria toxin, was UV induced from a culture of the C7(beta 197)tox- strain. A total of 191 C7(beta 197)tox- lysogens were isolated and selected according to the halo produced on TYE agar containing antidiphtheria toxin serum and were further characterized by Southern blots of their chromosomal DNA. Most of the isolates turned out to be monolysogens, but some tandem and nontandem double lysogens were also found. The nontandem double lysogens were stable and capable of giving high yields of CRM197, up to threefold higher than monolysogens. They are, therefore, suitable for large-scale industrial production.  相似文献   

11.
The analysis of the DNA of one nontoxigenic C. diphtheriae phage and two toxigenic ones has revealed that phage phi 984tox+ belongs to omega-like tox+ phages, phage phi 9tox+ is a representative of a new group of phages and phage B (Freeman) tox is a deletion mutant of phage beta. The location of this deletion on the physical map of this phage has been established. To obtain the physical map of phage phi 984tox+, the complete library of internal DNA fragments has been constructed in vector pBR 322. The gene of native diphtheria toxin has been cloned in vectors pBR 322 and pUR 250. Plasmids pUR 250 with the inserts of the toxin gene have been shown to be unstable if tox and lac promoters are located in tandem before the body of the toxin gene. The prolonged cultivation of clones having such structure leads to the formation of a spontaneous mutation located in the region coding the C-end part of the A-fragment of the toxin.  相似文献   

12.
A library of chromosomal DNA from Corynebacterium diphtheriae Belfanti 1030(-)tox- was cloned in the lambda phage vector EMBL4 and screened for sequences homologous to corynephage omega tox+ and the attB1-attB2 region of the C7(-)tox- chromosome. Two portions of the 1030(-)tox- chromosome, 35 and 30.5 kilobases long which contain, respectively, the entire region homologous to corynephage omega tox+ and the attB1-attB2 sites, were mapped with the restriction endonucleases BamHI and EcoRI. Chromosomal DNA from 1030(-)tox- was shown to contain a 15.5-kilobase region that was homologous to ca. 42% of the corynephage omega tox+ genome. These sequences were found to hybridize to three regions of the phage genome and do not contain either the diphtheria tox operon or the attP site. These sequences are distant from the chromosomal region that contains the attB1-attB2 sites. Moreover, unlike other known defective prophages, the physical map of this prophage starts at the cos site and is colinear with the vegetative phage map. The 30.5-kilobase region of the 1030(-)tox- chromosome, which contains the attB1-attB2 sites, has a central core region that is almost identical to the corresponding region of the C7(-)tox- chromosome; however, the flanking sequences in these two strains of C. diphtheriae are different.  相似文献   

13.
The bacterial attachment sites of independently isolated Corynebacterium diphtheriae strains C7s and (belfanti)1030 lysogenic for corynebacteriophages beta tox+, omega tox+, and gamma tox- were determined by Southern blot analysis. Both corynebacterial strains contained two distinct bacterial attachment sites (attB1 and attB2). We found that infection by any of the three closely related corynebacteriophages may give rise to single, double, and triple lysogens. In the case of toxigenic C. diphtheriae strains C7s(beta tox+) and C7s(omega tox+), the final yields of diphtheria toxin produced under optimal conditions were equivalent and varied by one-, two-, or threefold depending upon the number of integrated prophage.  相似文献   

14.
Lytic corynebacteriophage betahv64(tox+) has been characterized, and methods for studying the expression of its tox(+) gene in nontoxinogenic Corynebacterium diphtheriae strain C7(s)(-)(tox-) described. During one cycle of viral growth there was a 1 million-fold increase in extracellular toxin. Both the conditions of the experiment and the use of purified phage, free from toxin, support the conclusion that all of the toxin was newly formed. This toxin was immunochemically indistinguishable from standard toxin produced by the PW8(r)(Pdi)(tox+) strain. Chloramphenicol was found to be an effective agent for synchronizing the initiation of viral growth. Once chloramphenicol was removed, intracellular toxin appeared and continued to increase throughout the latent period. Proflavine, added early in the latent period, blocked phage maturation without similarly affecting yields of toxin. Iron exerted a limited inhibitory effect on final toxin levels attained.  相似文献   

15.
A high-density growth approach was utilized to produce mutated diphtheria toxin from two strains of Corynebacterium diphtheria: C7 ()(tox-201, tox-9) and C7 ()(tox-107). The cross-reacting mutants (CRM) of the diphtheria toxin are CRM9 and CRM107; both of them carry the mutation in their binding site and, as a result, have 1/300 of the systemic toxicity of the wild-type diphtheria toxin. Since iron inhibits diphtheria toxin production, the traditional approach has been to grow the bacteria in a very low iron concentration. The procedure described here involved the use of a modified, non-deferrated, growth medium that provided fast and high-density growth of the bacteria, and which, when associated with simultaneous depletion of glucose and iron, enhanced the toxin production. Oxygen-enriched air was supplied to enable the bacteria to grow to a cell density giving an absorbance of 70 at 600 nm (15–20 g/l dry weight). The maximum toxin concentration in the culture supernatant was 150 mg/l. The CRM products, which remained stable following microfiltration and ultrafiltration, could be easily purified using a two-step chromatography procedure.  相似文献   

16.
The toxigenic corynebacteriophage omega tox+ was isolated from the hypertoxigenic Park-Williams no. 8 (PW8) strain of Corynebacterium diphtheriae and compared with the toxigenic corynebacteriophage beta tox+. The physical size and host range of both phages were found to be identical. An endonuclease restriction map of omega tox+ was constructed, and the locations of the cohesive ends (cos), phage attachment site (attP), and the diphtheria tox operon were identified. The genome of omega tox+ was found to differ from that of beta tox+ in three regions. In addition, omega tox+ was shown to be integrated into two nontandem corynebacterial phage attachment sites (attB1, attB2) in the PW8 chromosome. The differences in the restriction endonuclease digestion maps of omega tox+ and beta tox+ and the contribution of double lysogeny are discussed in relation to the hypertoxigenicity of the PW8 strain.  相似文献   

17.
Deoxyribonucleic acid fragments bearing the gene for diphtheria toxin have been identified in restriction enzyme digests of deoxyribonucleic acids from beta-converting and gamma-nonconverting corynebacteriophages. A combination of physical and genetic evidence has established that the Bam HI band C fragment of beta phage deoxyribonucleic acid, which carries the specific phage attachment site (Buck and Groman, J. Bacteriol. 148:131-142, 1981), also carries most, and probably all, of the gene for diphtheria toxin. A detailed restriction map of this tox-bearing Bam HI fragment has been developed, and the locations and orientation of the tox gene and the attP site within this fragment have been established.  相似文献   

18.
We have identified the structural proteins of phage T4 precursor tails. Complete tails, labeled with 14C-labeled amino acids, were isolated from cells infected with mutants blocked in head assembly. The proteins were characterized by sodium dodecyl sulfate-acrylamide gel electrophoresis and subsequent autoradiography. The complete tails are made up of at least fifteen different species of phage proteins.To identify the genes specifying these proteins we prepared 14C-labeled amino acid lysates made with amber mutants defective in each of the twenty-one genes involved in tail assembly. Comparison of the gel pattern of the amber mutant lysates with wild type lysates enabled us to identify the following gene products, with molecular weights in parentheses: P6 (85,000); P7 (140,000); P8 (46,000); P9 (34,000); P10 (88,000); P11 (26,000); P12 (55,000); P15 (35,000); P18 (80,000); P19 (21,000); P29 (77,000). These eleven species are all structural proteins of the tail. The genetically unidentified tail proteins have molecular weights of 42,000, 41,000, 40,000 and 35,000. They are likely to be the products of known phage genes which were not resolved in the crowded middle region of the whole lysate gel patterns. The major tail proteins are all synthesized during the late part of the phage growth cycle.The mobilities of the proteins derived from tails did not differ from the mobilities of the proteins when derived from the unassembled pools of subunits accumulating in mutant infected cells, or when derived from complete phage particles.The genes for at least seven of the structural proteins are contiguous on the genetic map. Genes for proteins needed in many copies seem to be clustered separ- ately from genes whose products are needed in only a few copies. Consideration of protein sizes and published mapping data on phage T4 also suggest that the phage structural proteins are, on the average, much larger than the non-structural proteins.The requirement that at least fifteen different species of proteins must come together in forming a phage tail emphasizes the complexity of this morphogenetic process.  相似文献   

19.
The amino-acid sequences of two diphtheria toxin-related, non-toxic proteins, CRM45 and CRM197 , were deduced from the complete sequence of their genes: tox 45 and tox 197. CRM45 lacks the last 149 C-terminal amino-acid residues, but is otherwise identical to diphtheria toxin: a single C----T transition introduces an "ochre" (TAA) termination signal in tox 45, after the codon for threonine-386. A single G----A transition was also found in tox 197, leading to the substitution of glycine-52, present in the wild-type toxin, with glutamic acid in CRM197 . This aminoacid change is responsible for the loss of the NAD:EF2 ADP-ribosyltransferase activity in CRM197 , due most probably to an alteration of the NAD+ binding site.  相似文献   

20.
Prophage map of converting corynebacteriophage beta.   总被引:19,自引:6,他引:13       下载免费PDF全文
A prophage map for corynebacteriophage beta consisting of seven markers has been constructed and compared with the vegetative map. The mapping system utilizes heteroimmune double lysogens and capitalizes on the fact that these double lysogens are very unstable and throw off monolysogenic segregants. The prophage map, produced by characterizing the recombinant phage in these monolysogenic segregants, appears to be a cyclic permutation of the vegetative map with the gene for toxin at one end of the prophage map and the gene for phage immunity at the other. This permutation is in accord with the Campbell model for insertion of lambda phage if a site between the toxin and immunity genes in the vegetative map is designated as the phage attachment site. The position of the gene for toxin in the prophage map suggests that converting phages may have originated as specialized transducing phages for this gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号