首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inactivation of D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating) EC 1.2.1.12) (GAPDH) during thermal denaturation has been compared to its dissociation-aggregation measured by light scattering and changes in secondary structure measured by CD in the far ultraviolet. The inactivation at 38.5 degrees C consists of two stages. The rate of the first stage is too fast to be followed by conventional methods. The extent of this fast stage inactivation increases with increasing temperature and, more markedly, with increasing pH. At this stage, the inactivation is reversible and no appreciable dissociation or change in secondary structure can be detected. The secondary structure of the enzyme is relatively heat stable, showing no appreciable change at 38.5 degrees C. At this temperature, the enzyme first dissociates within several minutes probably into dimers and with prolonged heating, it becomes irreversibly aggregated. The above results are in accord with the earlier suggestion, based on results obtained during denaturation of a number of enzymes by guanidine hydrochloride (GdnHCl) and urea, that for some enzymes the active site is situated in a region more susceptible to perturbation than the molecule as a whole (Tsou, C.-L. (1986) Trends Biochem. Sci. 11, 427).  相似文献   

2.
The course of the recovery of the enzymatic activity and the native conformation during the renaturation of urea-denatured creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) has been studied. Under suitable conditions, an activity recovery of 95% can be obtained and the reactivation follows a triphasic course. The initial two phases are relatively fast, whereas the slow phase takes some 24 h to reach completion. The recovery of the native conformation has been followed by changes in fluorescence, ultraviolet absorption and in exposed SH groups and has been shown to be a biphasic process. Both the reactivation and the refolding processes are independent of protein concentrations within a certain range, showing that the dimerization of the enzyme molecule is not rate-limiting. A comparison of the rate constants for the refolding of the molecule with those for the recovery of its catalytic activity shows that these are not synchronized and the activity recovery approaches completion after the refolding and dimerization of the subunits so far as can be detected by the methods employed. The final stage of refolding with complete activity recovery probably involves subtle conformational changes of the dimeric enzyme molecule not detectable by the physiochemical methods used in the present study.  相似文献   

3.
The inactivation and conformational changes of the multifunctional fatty acid synthase (acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing and thioester-hydrolyzing), EC 2.3.1.85) from chicken liver have been studied in urea solution. The results show that complete inactivation of the fatty acid synthase occurs before obvious conformational changes with regard to the overall, beta-ketoacyl reduction and acetoacetyl-CoA reduction reactions. Significant conformational changes indicated by the changes of the intrinsic fluorescence emission and the circular dichroism spectra occurred at higher urea concentrations. The kinetic rate constants for the two phase inactivation and unfolding reactions were measured and semilogarithmic plots of the activity versus time gave curves which could be resolved into two straight lines, indicating that both the inactivation and unfolding processes consisted of fast and slow phases as a first-order reaction. The results from Lineweaver-Burk plots indicated that urea is a competitive inhibitor for acetyl-CoA and malonyl-CoA, with K(m) increasing with increasing urea concentrations. However, urea is a noncompetitive inhibitor for NADPH, the substrate of the overall reaction and beta-ketoacyl reduction reaction, and acetylacetate, the substrate of the beta-ketoacyl reduction reaction. Activation by low concentrations of urea was observed although this activation was only temporarily induced in an early stage of inactivation. The aggregation phenomenon of the fatty acid synthase in a certain concentration range of urea (3-4 M) was also observed during unfolding. This result shows that this multifunctional enzyme unfolds with competition with misfolding in the folding pathway. Comparison of inactivation and conformational changes of the enzyme as well as aggregation imply that unfolding intermediates may exist during urea denaturation. The possible unfolding pathway of fatty acid synthase is also discussed in this paper.  相似文献   

4.
The effects of zinc on creatine kinase (CK) are very distinctive compared with other bivalent metal ions. Zinc up to 0.1 mM induced increases in CK activity, accompanied by significant hydrophobic surface exposure and increase in a-helix content of CK. Zinc over 0.1 mM denatured and inactived CK. In the presence of 0.1 mM zinc, the CK activity was very close to that of the native CK, but its conformation changed greatly. The kinetic courses of CK inactivation and conformational change in the presence of 1 mM zinc were measured to determine apparent rate constants of inactivation and conformational change. Zinc over 0.05 mM induced CK aggregation at 37°C, and the aggregation was dependent on zinc concentration, CK concentration, and temperature. The inactivation and aggregation can be reversed by EDTA. An explanation for CK aggregation induced by zinc is proposed, as well as a mechanism for CK abnormality in Alzheimer's disease.To whom correspondence should be addressed.  相似文献   

5.
Using the methods of far-ultraviolet circular dichroism (CD) spectra, fluorescence spectra, and enzyme activity assays, the inactivation and conformational changes of creatine kinase (CK) induced by 1,1,1,3,3,3-hexafluoro-2-propanol (hexafluoroisopropanol (HFIP)) of different concentrations were investigated. To avoid the aggregation of CK that occurs with high HFIP, concentrations of 0%-5% HFIP were used in this study. The CD spectra showed that HFIP concentrations above 2.5% strongly induced the formation of secondary structures of CK. No marked conformational changes were observed at low concentrations of HFIP (0%-2.5%). After incubation with 0.2% HFIP for 10 min, CK lost most of its activity. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity described previously by Tsou was applied to study the kinetics of CK inactivation during denaturation by HFIP. The inactivation rate constants for the free enzyme and the substrate-enzyme complex were determined by Tsou's method. The results suggested that low concentrations of HFIP had a high potential to induce helices of protein and that the active site of the enzyme was situated in a limited and flexible region of the enzyme molecule that was more susceptible to the denaturant than was the protein as a whole.  相似文献   

6.
Z X Wang  B Preiss  C L Tsou 《Biochemistry》1988,27(14):5095-5100
Kinetics of inactivation and modification of the reactive thiol groups of creatine kinase by 5,5'-dithiobis(2-nitrobenzoic acid) or iodoacetamide have been compared, the former by following the substrate reaction in presence of the inactivator [Wang, Z.-X., & Tsou, C.-L. (1987) J. Theor. Biol. 127, 253]. The microscopic constants for the reaction of the inactivators with the free enzyme and with the enzyme-substrate complexes were determined. From the results obtained it appears that with respect to ATP both inactivators are noncompetitive whereas for creatine iodoacetamide is competitive but DTNB is not. The formation of the ternary complex protects against the inactivation by both DTNB and iodoacetamide. The inactivation kinetics is monophasic with both inactivators, but under similar conditions, the modification reactions in the presence of the transition-state analogue of creatine-ADP-Mg2+-nitrate show biphasic kinetics as also reported by Price and Hunter [Price, N.C., & Hunter, M.G. (1976) Biochim. Biophys. Acta 445, 364]. If the reactive ternary complex and the enzyme complexed with the transition-state analogue react in the same way with these reagents, the modification of one fast-reacting thiol group for each enzyme molecule leads to complete inactivation, indicating that the enzyme has to be in the dimeric state to be active.  相似文献   

7.
The effects of dimethyl sulfoxide (DMSO) on creatine kinase (CK) conformation and enzymatic activity were studied by measuring activity changes, aggregation, and fluorescence spectra. The results showed that at low concentrations (< 65% v/v), DMSO had little effect on CK activity and structure. However, higher concentrations of DMSO led to CK inactivation, partial unfolding, and exposure of hydrophobic surfaces and thiol groups. DMSO caused aggregation during CK denaturation. A 75% DMSO concentration induced the most significant aggregation of CK. The CK inactivation and unfolding kinetics were single phase. The unfolding of CK was an irreversible process in the DMSO solutions. The results suggest that to a certain extent, an enzyme can maintain catalytic activity and conformation in water-organic mixture environments. Higher concentrations of DMSO affected the enzyme structure but not its active site. Inactivation occurred along with noticeable conformational change during CK denaturation. The inactivation and unfolding of CK in DMSO solutions differed from other denaturants such as guanidine, urea, and sodium dodecyl sulfate. The exposure of hydrophobic surfaces was a primary reason for the protein aggregation.  相似文献   

8.
Thermal denaturation of creatine kinase from rabbit skeletal muscle has been studied by differential scanning calorimetry. The excess heat capacity vs. temperature profiles were independent of protein concentration, but strongly temperature scanning rate-dependent. It has been shown that thermal denaturation of creatine kinase satisfies the previously proposed validity criteria for the two-state irreversible model [Kurganov et al., Biophys. Chem.70 (1997) 125]. The energy activation value has been calculated to be 461.0 +/- 0.7 kJ/mol.  相似文献   

9.
The course of refolding and reactivation of urea-denatured creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) has been studied in the absence and presence of molecular chaperonin GroEL. The enzyme was denatured in Tris--HCl buffer containing 6 M urea for 1 h. In the refolding studies, the denatured enzyme was diluted 60-fold into the same buffer containing GroEL or not for activity, turbidity, fluorescence measurements and polyacrylamide gel electrophoresis. The results show that the reactivation process is dependent of creatine kinase concentration in the concentration range 2.5--4 microM. The levels of activity recovery decrease with increasing enzyme concentration because of the formation of wrong aggregates. The molecular chaperonin GroEL can bind the refolding intermediate of creatine kinase and thus prevent the formation of wrong aggregates. This intermediate is an inactive dimeric form that is in a conformation resembling the 'molten globule' state.  相似文献   

10.
Su JT  Kim SH  Yan YB 《Biophysical journal》2007,92(2):578-587
Aminoacylase I (ACYI) catalyzes the stereospecific hydrolysis of L-acylamino acids and is generally assumed to be involved in the final step of the degradation of intracellular N-acetylated proteins. Apart from its crucial functions in intracellular amino acid metabolism, ACYI also has substantial commercial importance for the optical resolution of N-acylated DL-amino acids. As a zinc-dependent enzyme, ACYI is quite stable against heat-induced denaturation and can be regarded as a thermostable enzyme with an optimal temperature for activity of approximately 65 degrees C. In this research, the sequential events in ACYI thermal denaturation were investigated by a combination of spectroscopic methods and related resolution-enhancing techniques. Interestingly, the results from fluorescence and infrared (IR) spectroscopy clearly indicated that a pretransitional stage existed at temperatures from 50 degrees C to 66 degrees C. The thermal unfolding of ACYI might be a three-state process involving an aggregation-prone intermediate appearing at approximately 68 degrees C. The pretransitional structural changes involved the partial unfolding of the solvent-exposed beta-sheet structures and the transformation of about half of the Class I Trp fluorophores to Class II. Our results also suggested that the usage of resolution-enhancing techniques could provide valuable information of the step-wise unfolding of proteins.  相似文献   

11.
The inactivation and conformational changes of the bacterial chaperonin GroEL have been studied in SDS solutions with different concentrations. The results show that increasing the SDS concentration caused the intrinsic fluorescence emission intensity to increase and the emission peak to slightly blue-shift, indicating that increasing the SDS concentration can cause the hydrophobic surface to be slightly buried. The changes in the ANS-binding fluorescence with increasing SDS concentration also showed that the GroEL hydrophobic surface decreased. At low SDS concentrations, less than 0.3 mM, the GroEL ATPase activity increased with increasing SDS concentration. Increasing the SDS concentration beyond 0.3 mM caused the GroEL ATPase activity to quickly decrease. At high SDS concentrations, above 0.8 mM, the residual GroEL ATPase activity was less than 10% of the original activity, but the GroEL molecule maintained its native conformation (as indicated by the exposure of buried thiol groups, electrophoresis, and changes of CD spectra). The above results suggest that the conformational changes of the active site result in the inactivation of the ATPase even though the GroEL molecule does not markedly unfold at low SDS concentrations.  相似文献   

12.
The effects of components of the transition state analog (creatine, MgADP, planar anion) on the kinetics and conformation of creatine kinase isozyme BB from monkey brain was studied. From analysis of the reaction time course using the pH stat assay, it was shown that during accumulation of the reaction products (ADP and creatine phosphate), among several anions added, nitrate proved the most effective in inhibiting catalytic activity. Maximum inhibition (77%) was achieved with 50 mM nitrate. The Km for ATP was 0.48 mM and in the presence of 2.5 mM nitrate, 2.2 mM; for ATP in the presence of the dead-end complex, creatine and ADP, the apparent Km was 2.0 mM and the Ki was 0.16 mM; in the presence of the transition state analog, MgADP + NO3- + creatine, the Ki was estimated to be 0.04 mM. Ultraviolet difference spectra of creatine kinase revealed significant differences only in the presence of the complete mixture of the components of the transition state analog. Comparison of gel filtration elution profiles for creatine kinase in the absence and presence of the complete mixture of components of the transition state analog did not reveal any differences in elution volume. Addition of components of the transition state analog to creatine kinase resulted in only a marginal change in intrinsic fluorescence. The presence of the components of the transition state analog increased the rate of reactivity of the enzyme with trinitrobenzenesulfonic acid from k = 6.06 +/- 0.05 M-1 min-1 to 6.96 +/- 0.11 M-1 min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Protein stability plays an extremely important role not only in its biological function but also in medical science and protein engineering. Osmolytes provide a general method to protect proteins from the unfolding and aggregation induced by extreme environmental stress. In this study, the effect of glycerol on protection of the model enzyme creatine kinase (CK) against heat stress was investigated by a combination of spectroscopic method and thermodynamic analysis. Glycerol could prevent CK from thermal inactivation and aggregation in a concentration-dependent manner. The spectroscopic measurements suggested that the protective effect of glycerol was a result of enhancing the structural stability of native CK. A further thermodynamic analysis using the activated-complex theory suggested that the effect of glycerol on preventing CK against aggregation was consistent with those previously established mechanisms in reversible systems. The osmophobic effect of glycerol, which preferentially raised the free energy of the activated complex, shifted the equilibrium between the native state and the activated complex in favor of the native state. A comparison of the inactivation rate and the denaturation rate suggested that the protection of enzyme activity by glycerol should be attributed to the enhancement of the structural stability of the whole protein rather than the flexible active site.  相似文献   

15.
16.
The effects of osmolytes, including dimethysulfoxide, sucrose, glycine and proline, on the unfolding and inactivation of guanidine-denatured creatine kinase were studied by observing the fluorescence emission spectra, the CD spectra and the inactivation of enzymatic activity. The results showed that low concentrations of dimethysulfoxide (< 40%), glycine (< 1.5 m), proline (< 2.5 m) and sucrose (< 1.2 m) reduced the inactivation and unfolding rate constants of creatine kinase, increased the change in transition free energy of inactivation and unfolding (Delta Delta G(u)) and stabilized its active conformation relative to the partially unfolded state with no osmolytes. In the presence of various osmolytes, the inactivation and unfolding dynamics of creatine kinase were related to the protein concentrations. These osmolytes protected creatine kinase against guanidine denaturation in a concentration-dependent manner. The ability of the osmolytes to protect creatine kinase against guanidine denaturation decreased in order from sucrose to glycine to proline. Dimethysulfoxide was considered separately. This study also suggests that osmolytes are not only energy substrates for metabolism and organic components in vivo, but also have an important physiological function for maintaining adequate rates of enzymatic catalysis and for stabilizing the protein secondary and tertiary conformations.  相似文献   

17.
The effect of urea on glucose dehydrogenase from Bacillus megaterium has been studied by following changes in enzymatic activity, conformation and state of aggregation. It was found that the denaturation process involves several transitions. At very low urea concentrations (below 0.5 M), where the enzyme is fully active and tetrameric, there is a conformational change as monitored by an increase in intensity of the tryptophan fluorescence and a maximum exposure of organized hydrophobic surfaces as reported by the fluorescence of 4,4'-dianilino-1,1'-binaphthyl-5.5'-disulfonic acid. At slightly higher urea concentrations (0.75-2 M), a major conformational transition occurs, as monitored by circular dichroism and fluorescence measurements, in which the enzyme activity is completely lost and is concomitant with the formation of interacting intermediates that lead to a highly aggregated state. Increasing urea concentrations cause a complete dissociation to lead first a partially and eventually the complete unfolded monomer. These phenomena are fully reversible by dilution of denaturant. It is concluded that after urea denaturation, the folding/assembly pathway of glucose dehydrogenase occurs with the formation of intermediate species in which transient higher aggregates appear to be involved.  相似文献   

18.
19.
Fluorescence emission intensity changes with two different excitation wavelengths were used to measure the unfolding rate constants of different domains of muscle type creatine kinase (CK-MM) according to the heterogeneity of aromatic amino acid distributions in the crystal structure of CK-MM. The results were compared with those of brain type creatine kinase (CK-BB) and dithio-bis(succinimidyl propionate) cross-linked CK-MM. CK-BB differed greatly in its distribution of aromatic amino acids in each domain and the unfolding process of cross-linked CK-MM was not accompanied by the dissociation of the dimer. The N-terminal domain of CK-MM was shown to be well protected by subunit interaction during the unfolding of CK-MM in 4 M urea. Dissociating the CK dimer in high urea concentration (6 M) eliminated the subunit protection. Subunit interactions are also important in preserving secondary structure and forming contracted conformation at low urea concentration.  相似文献   

20.
The purpose of this study was to elucidate the functional differences between the CK isoforms by cloning the cDNAs of 12 CK isoforms: the M and B cytoplasmic forms and uMiCK from mouse, the M1, M2 and B cytoplasmic forms from Danio rerio, M1 and M2 cytoplasmic forms from the lower vertebrate Lampetra japonica, a cytoplasmic CK and a MiCK from the marine worm Neanthes diversicolor, and a cytoplasmic CK and a MiCK from the soft coral Dendronephthya gigantea. These were expressed in Escherichia coli as a fusion protein with maltose-binding protein, and kinetic constants (K(m), K(d) and k(cat)) of all the recombinant enzymes, except for the unstable Dendronephthya cytoplasmic CK, were determined for the forward reaction. The kinetic constants of the M- and B-forms of the mouse and Danio cytoplasmic CKs differed significantly, with the K(m) for creatine (K(m)Cr) of M-CK being three- to nine-fold higher than that of B-CK, possibly reflecting differences in the concentration of creatine in muscle and brain cells. The mouse uMiCK had the lowest K(m)Cr value among the CK isoforms. In addition, it also exhibited a strong synergism for substrate binding (K(d)/K(m)=11.8). These results indicate that uMiCK has unique characteristics compared with other CK isoforms. Two subisoforms of M-CK were found in the lower vertebrate L. japonica, and the kinetic constants of recombinant M1- and M2-CKs differed significantly. The M1- and M2-CKs were expressed in skeletal muscle with a ratio of 7:3, while M1-CK was the predominant subisoform in the testis. The kinetic constants of cytoplasmic CK from the marine worm Neanthes were significantly different from those of Neanthes MiCK, possibly indicating that functional differences among CK isoforms occurred at least before the divergence of annelids from other protostome invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号