首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tris and two of its hydroxylated amine analogs were examined in a metal-free, universal n-butylamine buffer, for their interaction with intestinal brush border sucrase. Our recent three-proton-families model (Vasseur, van Melle, Frangne and Alvarado (1988) Biochem. J., 251, 667-675) has provided the sucrase pK values necessary to interpret the present work. At pH 5.2, 2-amino-2-methyl-l-propanol (PM) causes activation whereas Tris has a concentration-dependent biphasic effect, first causing activation, then fully competitive inhibition. The amine species causing activation is the protonated, cationic form. The difference between the two amines is related to the fact that Tris has a much lower pKa value than PM (respectively, 8.2 and 9.8). Even at pH 5.2, Tris (but not PM) exists as a significant proportion of the free base which, by inhibiting the enzyme fully competitively, overshadows the activating effect of the cationic, protonated amine. Above pH 6.8, both Tris and PM act as fully competitive inhibitors. These inhibitions increase monotonically between pH 6.5 and 8.0 but, above pH 8, inhibition by 2.5 mM Tris tends to diminish whereas inhibition by 40 mM PM increases abruptly to be essentially complete at pH 9.3 and above. As pH increases from 7.6 to 9.0, the apparent affinity of the free amine bases decreases whereas that of the cationic, protonated amines, increases. In this way, the protonated amines replace their corresponding free bases as the most potent inhibitors at high pH. The pH-dependent inhibition by 300 mM Li+ is essentially complete at pH 8, independent of the presence or absence of either 2.5 mM Tris or 40 mM PM. Even at pH 7.6, an excess (300 mM) of Li+ causes significant increases in the apparent Ki value of each Tris, PD (2-amino-2-methyl-1-3-propanediol) and PM, suggesting the possibility of a relation between the effects of Li+ and those of the hydroxylated amines which in fact are mutually exclusive inhibitors. The inhibitory results are interpreted in terms of a mechanistic model in which the free bases bind at two distinct sites in the enzyme's active center. Binding at the glucosyl sub-site occurs through the amine's free hydroxyl groups. This positioning facilitates the interaction between the lone electron pair of the deprotonated amino group with a proton donor in the enzyme's active center, characterized by a pK0 around 8.1. When this same group deprotonates, then the protonated amines acting as proton donors replace the free bases as the species giving fully competitive inhibition of sucrase.  相似文献   

2.
A common feature of all the proposed mechanisms for monoamine oxidase is the initiation of catalysis with the deprotonated form of the amine substrate in the enzyme-substrate complex. However, recent steady-state kinetic studies on the pH dependence of monoamine oxidase led to the suggestion that it is the protonated form of the amine substrate that binds to the enzyme. To investigate this further, the pH dependence of monoamine oxidase A was characterized by both steady-state and stopped-flow techniques with protiated and deuterated substrates. For all substrates used, there is a macroscopic ionization in the enzyme-substrate complex attributed to a deprotonation event required for optimal catalysis with a pK(a) of 7.4-8.4. In stopped-flow assays, the pH dependence of the kinetic isotope effect decreases from approximately 13 to 8 with increasing pH, leading to assignment of this catalytically important deprotonation to that of the bound amine substrate. The acid limb of the bell-shaped pH profile for the rate of flavin reduction over the substrate binding constant (k(red)/K(s), reporting on ionizations in the free enzyme and/or free substrate) is due to deprotonation of the free substrate, and the alkaline limb is due to unfavourable deprotonation of an unknown group on the enzyme at high pH. The pK(a) of the free amine is above 9.3 for all substrates, and is greatly perturbed (DeltapK(a) approximately 2) on binding to the enzyme active site. This perturbation of the substrate amine pK(a) on binding to the enzyme has been observed with other amine oxidases, and likely identifies a common mechanism for increasing the effective concentration of the neutral form of the substrate in the enzyme-substrate complex, thus enabling efficient functioning of these enzymes at physiologically relevant pH.  相似文献   

3.
The prephenate dehydrogenase activity of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase from Escherichia coli catalyzes the oxidative decarboxylation of both prephenate and deoxoprephenate, which lacks the keto group in the side chain (V 78% and V/K 18% those of prephenate). Hydride transfer is to the B side of NAD, and the acetylpyridine and pyridinecarboxaldehyde analogues of NAD have V/K values 40 and 9% and V values 107 and 13% those of NAD. Since the 13C isotope effect on the decarboxylation is 1.0103 with deuterated and 1.0033 with unlabeled deoxoprephenate (the deuterium isotope effect on V/K is 2.34), the mechanism is concerted, and if CO2 has no reverse commitment, the intrinsic 13C and deuterium isotope effects are 1.0155 (corresponding to a very early transition state for C-C bond cleavage) and 7.3, and the forward commitment is 3.7. With deoxodihydroprephenate (lacking one double bond in the ring), oxidation occurs without decarboxylation, and one enantiomer has a V/K value 23-fold higher than the other (deuterium isotope effects are 3.6 and 4.1 for fast and slow isomers; V for the fast isomer is 5% and V/K 0.7% those of prephenate). The fully saturated analogue of deoxoprephenate is a very slow substrate (V 0.07% and V/K approximately 10(-5%) those of prephenate). pH profiles show a group with pK = 8.3 that must be protonated for substrate binding and a catalytic group with pK = 6.5 that is a cationic acid (likely histidine). This group facilitates hydride transfer by beginning to accept the proton from the 4-hydroxyl group of prephenate prior to the beginning of C-C cleavage (or fully accepting it in the oxidation of the analogues with only one double bond or none in the ring). In contrast with the enzymatic reaction, the acid-catalyzed decarboxylation of prephenate and deoxoprephenate (t1/2 of 3.7 min at low pH) is a stepwise reaction with a carbonium ion intermediate, since 18O is incorporated into substrate and its epi isomer during reaction in H218O. pH profiles show that the hydroxyl group must be protonated and the carboxyl (pK approximately 4.2) ionized for carbonium ion formation. The carbonium ion formed from prephenate decarboxylates 1.75 times faster than it reacts with water (giving 1.8 times as much prephenate as epi isomer). The observed 13C isotope effect of 1.0082 thus corresponds to an intrinsic isotope effect of 1.023, indicating an early transition state for the decarboxylation step. epi-Prephenate is at least 20 times more stable to acid than prephenate because it exists largely as an internal hemiketal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The pKa values of enzyme groups of Escherichia coli glutamine synthetase which affect catalysis and/or substrate binding were determined by measuring the pH dependence of Vmax and V/K. Analysis of these data revealed that two enzyme groups are required for catalysis with apparent pKa values of approximately 7.1 and 8.2. The binding of ATP is essentially independent of pH in the range studied while the substrate ammonia must be deprotonated for the catalytic reaction. Using methylamine and hydroxylamine in place of ammonia, the pKa value of the deprotonated amine substrate as expressed in the V/K profiles was shifted to a lower pKa value for hydroxylamine and a higher pKa value for methylamine. These data indicate that the amine substrate must be deprotonated for binding. Hydroxylamine is at least as good a substrate as ammonia judged by the kinetic parameters whereas methylamine is a poor substrate as expressed in both the V and V/K values. Glutamate binding was determined by monitoring fluorescence changes of the enzyme and the data indicate that a protonated residue (pKa = 8.3 +/- 0.2) is required for glutamate binding. Chemical modification by reductive methylation with HCHO indicated that the group involved in glutamate binding most likely is a lysine residue. In addition, the Ki value for the transition state analog, L-3-amino-3-carboxy-propanesulfonamide was measured as a function of pH and the results indicate that an enzyme residue must be protonated (pKa = 8.2 +/- 0.1) to assist in binding. A mechanism for the reaction catalyzed by glutamine synthetase is proposed from the kinetic data acquired herein. A salt bridge is formed between the gamma-phosphate group of ATP and an enzyme group prior to attack by the gamma-carboxyl of glutamate on ATP to form gamma-glutamyl phosphate. The amine substrate subsequently attacks gamma-glutamyl phosphate resulting in formation of the tetrahedral adduct before phosphate release. A base on the enzyme assists in the deprotonation of ammonia during its attack on gamma-glutamyl phosphate or after the protonated carbinol amine is formed. Based on the kinetic data with the three amine substrates, catalysis is not rate-limiting through the pH range 6-9.  相似文献   

5.
The pH dependence of the kinetic parameters of the L-aspartase-catalyzed reaction have been examined in both the amination and the deamination directions. The enzyme isolated from Escherichia coli exists in a pH-dependent equilibrium between a higher pH form that has an absolute requirement for a divalent metal ion and for substrate activation, and a low pH form that does not require activation by either substrate or metal ions. The interconversion between these enzyme forms is observed near neutral pH in the profiles examined for the reaction in either direction. This pH-dependent activation has not been observed for other bacterial aspartases. Loss of activity is observed at high pH with a pK value of 9. The pH profiles of competitive inhibitors such as 3-nitropropionic acid and succinic acid have shown that the enzyme group responsible for this activity loss must be protonated for substrate binding at the active site. An enzymatic group has also been identified that must be protonated in the amination reaction, with a pK value near 6.5, and deprotonated in the deamination reaction. This group, tentatively assigned as a histidyl residue, fulfills the criteria for the acid-base catalyst at the active site of L-aspartase.  相似文献   

6.
G Rudnick  S C Wall 《Biochemistry》1992,31(29):6710-6718
p-Chloroamphetamine (PCA) interacts with serotonin transporters in two membrane vesicle model systems by competing with serotonin for transport and stimulating efflux of accumulated serotonin. In plasma membrane vesicles isolated from human platelets, PCA competes with [3H]imipramine for binding to the serotonin transporter with a KD of 310 nM and competitively inhibits serotonin transport with a KI of 4.8 nM. [3H]Serotonin efflux from plasma membrane vesicles is stimulated by PCA in a Na(+)-dependent and imipramine-sensitive manner characteristic of transporter-mediated exchange. In membrane vesicles isolated from bovine adrenal chromaffin granules, PCA competitively inhibits ATP-dependent [3H]serotonin accumulation with a KI of 1.7 microM and, at higher concentrations, stimulates efflux of accumulated [3H]serotonin. Stimulation of vesicular [3H]serotonin efflux is due in part to dissipation of the transmembrane pH difference (delta pH) generated by ATP hydrolysis. Part of PCA's ability to stimulate efflux may be due to its transport by the vesicular amine transporter. Flow dialysis experiments demonstrated uptake of [3H]PCA into chromaffin granule membrane vesicles in response to the delta pH generated in the presence of Mg2+ and ATP. In plasma membrane vesicles, no accumulation was observed using an NaCl gradient as the driving force. We conclude that rapid nonmediated efflux of transported PCA prevents accumulation unless PCA is trapped inside by a low internal pH.  相似文献   

7.
The energetics of reserpine binding to the bovine adrenal biogenic amine transporter suggest that H+ ion translocation converts the transporter to a form which binds reserpine essentially irreversibly. Reserpine binding to bovine adrenal chromaffin granule membrane vesicles is accelerated by generation of a transmembrane pH difference (delta pH) (interior acid) or electrical potential (delta psi) (interior positive). Both components of the electrochemical H+ potential (delta mu H+) must be dissipated to block reserpine binding, and generation of either one stimulates the binding rate. Reserpine binding is less dependent than amine transport on the delta pH, suggesting that translocation of fewer H+ ions is required to expose the high-affinity site than are required for net transport. Bound reserpine dissociates very slowly, if at all, from the transporter. Binding is stable to 1% cholate, 1.5% Triton X-100, 1 M SCN-, and 8 M urea, but sodium dodecyl sulfate (0.035%) and high temperatures (100 degrees C) released bound reserpine, indicating that binding is noncovalent. The results raise the possibility that the transporter, by translocating one H+ ion outward down its concentration gradient, is converted to a form that can either transport a neutral substrate molecule inward or occlude reserpine in a dead-end complex.  相似文献   

8.
R M Raushel  W W Cleland 《Biochemistry》1977,16(10):2176-2181
Isotope exchange studies show that beef liver fructokinase has a random kinetic mechanism in which release of fructose from the enzyme is slower than that catalytic reaction. The stickiness of fructose in the presence of MgATP is confirmed by isotope partition studies, which show it to be released 0.53 times as fast as V1/Et in the presence, and 80--130 times as fast in the absence of MgATP. Fructose-1-P release from it binary complex is not at all rate limiting in the forward direction since no exchange of MgADP back into MgATP could be observed during the forward reaction. Failure to find any isotope effect by the equilibrium perturbation method with [1-18O]fructose (upper limit, 1.003, shows that P--O bond cleavage or formation is not rate limiting. The pH profiles for the forward reaction show a group (probably carboxyl with pK 5.7-6.0 and deltaHion = 0) that must be ionized and a group (perhaps lysine, with pK 9--10, and deltaHion 5-9 kcal/mol) which must be protonated for activity. The profile for the back reaction shows only a group with pK 5.5--6 that must be protonated for activity. A chemical mechanism is proposed in which a carboxyl group on the enzyme accepts a proton from the 1-hydroxyl of fructose during the forward reaction and donates it back during the reverse reaction.  相似文献   

9.
The chemical and kinetic mechanisms of the reaction catalyzed by the catalytic trimer of aspartate transcarbamoylase have been examined. The variation of the kinetic parameters with pH indicated that at least four ionizing amino acid residues are involved in substrate binding and catalysis. The pH dependence of K(ia) for carbamoyl phosphate and the K(i) for N-(phosphonoacetyl)-L- aspartate revealed that a protonated residue with a pK value of 9.0 is required for the binding of carbamoyl phosphate. However, the variation with pH of K(i) for succinate, a competitive inhibitor of aspartate, and for cysteine sulfinate, a slow substrate, showed that a single residue with a pK value of 7.3 must be protonated for binding these analogues and, by inference, aspartate. The profile of log V against pH displayed a decrease in reaction rate at low and high pH, suggesting that two groups associated with the Michaelis complex, a deprotonated residue with a pK value of 7.2 and a protonated group with a pK value of 9.5, are involved in catalysis. By contrast, the catalytically productive form of the enzyme-carbamoyl phosphate complex, as illustrated in the bell-shaped pH dependence of log (V/K)(asp), is one in which a residue with a pK value of 7.0 must be protonated while a group with a pK value of 9.1 is deprotonated. This interpretation is supported by the results from the temperature dependence of the V and V/K profiles and from the pH dependence of pK(i) for the aspartate analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Neutron activation analysis of UDP-galactose 4-epimerase from Escherichia coli for 53 metals shows that the enzyme does not contain any of these metals at significant levels. The substrate analog P1-5'-uridine-P2-glucose-6-yl pyrophosphate (UGP), a structural isomer of UDP-glucose with the sugar linked to UDP through the C-6 hydroxyl group, is an inactivator that irreversibly reduces epimerase.NAD+ to epimerase.NADH. The pH dependence of kobs reveals the essential involvement of an acidic group, kinetically measured pKa = 5.48 +/- 0.08, in unprotonated form and two weakly acidic or basic groups, apparent pKa values of 10.03 +/- 0.43, in protonated forms. Measurements of kobs as a function of [UGP] show that it is given by kobs = k[UGP]/(K + [UGP]) at a given pH, where K = 0.19 +/- 0.04 mM throughout the pH range 4.8-10.4. The pH-dependent first order rate constants range from 0.28 to 1.94 s-1, with the maximum value at pH 7.6 and decreasing at acidic and basic pH values. Reaction of [glucose-1-2H]UGP proceeds with kinetic isotope effects of 5.0, 2.1, 2.0, 1.9, and 3.5 at pH values 5.0, 6.2, 7.6, 9.0, and 10.0, respectively. Therefore, hydride transfer becomes rate-limiting at pH extremes but is not limiting at neutral pH, although deuteride transfer is significantly limiting at all pH values. The isotope effects facilitated correction of the kinetic pK values to the thermodynamic values 6.1-6.2 on the acid side and 9.0-9.6 on the alkaline side. We postulate that the group with pK1 = 5.5 (6.1-6.2 corrected) functions as an enzymic general base that abstracts the glucosyl C-1 hydroxyl proton in concert with transfer of the C-1 hydrogen and two electrons to NAD+. The pH dependence on the alkaline side may be related to the uridine nucleotide-dependent conformational transition that is an essential step in the reduction of epimerase.NAD+ to epimerase.NADH by sugars.  相似文献   

11.
D S Sem  W W Cleland 《Biochemistry》1991,30(20):4978-4984
A number of phosphorylated aminosugars have been prepared and tested as substrates for metabolic reactions. 6-Aminoglucose is a slow substrate for yeast hexokinase with a Vmax that is only 0.012% that for glucose. While Vmax is pH independent, V/K decreases below the pK of 9.0 of the amino group. 6-Aminoglucose is a competitive inhibitor vs glucose with a Ki value increasing below the pK of 9 but leveling off at 33 mM below pH 7.16. Thus, protonation decreases binding affinity by 2.4 kcal/mol and only the neutral amine is catalytically competent. 6-Aminoglucose-6-P was synthesized enzymatically with hexokinase. Its pK's determined by 31P NMR were 2.46 and 8.02 (alpha anomer) and 2.34 and 7.85 (beta anomer), with a beta:alpha ratio of 3.0. It is most stable at pH 12 (half-life 228 h at 22 degrees C), while as a monoanion its half-life is 3 h. The free energy of hydrolysis at 25 degrees C and pH 9.25 is -10.3 kcal/mol. The phosphorylated amino analogues of 6-P-gluconate, ribulose-5-P, fructose-6-P, fructose-1,6-bis-P (amino group at C-6 only), and glyceraldehyde-3-P were synthesized enzymatically. The 31P NMR chemical shifts of these analogues are 8-8.5 ppm at pH 9.5. Their relative stability is 6-aminogluconate-6-P greater than 3-aminoglyceraldehyde-3-P greater than 6-aminoglucose-6-P greater than 6-aminofructose-1,6-bis-P congruent to 6-aminofructose-6-P greater than 5-aminoribulose-5-P. These analogues were tested as substrates for their respective enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
P Bünning  J F Riordan 《Biochemistry》1987,26(12):3374-3377
The angiotensin converting enzyme (ACE)-catalyzed hydrolysis of furanacryloyl-Phe-Gly-Gly is activated by monovalent anions, notably chloride. This activation is enhanced by sulfate; at pH 7.5, the effect is maximal at 0.8 M sulfate and is mediated through a specific interaction of the divalent anion with the enzyme, not through an increase in ionic strength. Sulfate decreases the apparent binding constant for chloride which manifests as a decrease of the apparent KM value, but it does not change kcat. Thus, at pH 7.5, sulfate solely affects substrate binding in accord with the ordered bireactant mechanism of chloride activation that pertains with this substrate [Bünning, P., & Riordan, J.F. (1983) Biochemistry 22, 100-116]. Increasing the pH from 6 to 9 in the absence of sulfate increases the apparent binding constant for chloride almost 60-fold from 3.3 to 190 mM. In the presence of 0.8 M sulfate, however, the change is only about 6-fold, from 0.7 to 4.2 mM. Over the same pH range, the apparent KM for furanacryloyl-Phe-Gly-Gly obtained with saturating chloride concentrations shifts from 0.14 to 0.48 mM, while in the presence of 0.8 M sulfate about 3-fold lower apparent KM values are obtained. Sulfate does not appear to affect the pK of a group on the enzyme that controls the mechanism of chloride activation but rather decreases the apparent KM by reducing the apparent binding constant for chloride.  相似文献   

13.
Activation of angiotensin converting enzyme by monovalent anions   总被引:4,自引:0,他引:4  
The angiotensin converting enzyme catalyzed hydrolysis of furanacryloyl-Phe-Gly-Gly is activated by monovalent anions in the order C1- greater than Br- greater than F- greater than NO3- greater than CH3COO-. In the alkaline pH region, increasing anion concentrations decrease the KM but do not change the kcat. This behavior is characteristic of an ordered bireactant mechanism in which the anion binds to the enzyme prior to the substrate. At acidic pH values, however, the anion activation is a result of both a decrease in KM and an increase in kcat, implying a bireactant mechanism in which anion and substrate bind randomly. For both the ordered and the bireactant mechanisms the anion serves as an essential activator. The effect of chloride on enzyme activity was studied over the pH range 5-10 under kcat/KM conditions and demonstrates that the apparent chloride binding constant increases from 3.3 mM at pH 6.0 to 190 mM at pH 9.0. The kcat vs. pH profile exhibits two pK values of 5.6 and 9.6, while the variation of KM with pH is characterized by a pK of 8.9 and a 2-fold increase between pH 6.5 and 7.5. The chloride activation of the hydrolysis of furanacryloyl-Phe-Gly-Gly is compared with that of the physiological substrates angiotensin I and bradykinin.  相似文献   

14.
M Gómez  P Isorna  M Rojo  P Estrada 《Biochimie》2001,83(10):961-967
The variation of kinetic parameters of beta-xylosidase from Trichoderma reesei QM 9414 with pH was used to elucidate the chemical mechanism of the p-nitrophenyl beta-D-xylopyranoside hydrolysis. The pH-dependence of V and V/K(m) showed that a group on the enzyme with a pK value of 3.20 must be unprotonated and a group with a pK value of 5.20 must be protonated for activity and both are involved in catalysis. Solvent-perturbation studies indicated that these groups are neutral acid type. Temperature dependence of kinetic parameters suggested the stickiness of the substrate at lower temperatures than the optimum and the calculated ionization enthalpies pointed to carboxyl groups as responsible for both pKs. Chemical modification with triethyloxonium tetrafluoroborate and protection with the substrate studies demonstrated essential carboxyl groups on the enzyme. Profiles of pK(i) for D-gluconic acid lactone indicated that a group with a pK value of 3.45 must be protonated for binding and it has been assigned to the carboxyl group of D-gluconic acid formed by lactone ring breakdown in solution.  相似文献   

15.
To obtain insight into the functional properties of Treponema denticola cystalysin, we have analyzed the pH- and ligand-induced spectral transitions, the pH dependence of the kinetic parameters, and the substrate specificity of the purified enzyme. The absorption spectrum of cystalysin has maxima at 418 and 320 nm. The 320 nm band increases at high pH, while the 418 nm band decreases; the apparent pK(spec) of this spectral transition is about 8.4. Cystalysin emitted fluorescence at 367 and 504 nm upon excitation at 320 and 418 nm, respectively. The pH profile for the 367 nm emission intensity increases above a single pK of approximately 8.4. On this basis, the 418 and 320 nm absorbances have been attributed to the ketoenamine and substituted aldamine, respectively. The pH dependence of both log k(cat) and log k(cat)/K(m) for alpha,beta-elimination reaction indicates that a single ionizing group with a pK value of approximately 6.6 must be unprotonated to achieve maximum velocity. This implies that cystalysin is more catalytically competent in alkaline solution where a remarkable portion of its coenzyme exists as inactive aldamine structure. Binding of substrates or substrate analogues to the enzyme over the pH range 6-9.5 converts both the 418 and 320 nm bands into an absorbing band at 429 nm, assigned to the external aldimine in the ketoenamine form. All these data suggest that the equilibrium from the inactive aldamine form of the coenzyme shifts to the active ketoenamine form on substrate binding. In addition, reinvestigation of the substrate spectrum of alpha,beta-elimination indicates that cystalysin is a cyst(e)ine C-S lyase rather than a cysteine desulfhydrase as claimed previously.  相似文献   

16.
The pH variation of the kinetic parameters for the oxidative decarboxylation of L-malate and decarboxylation of oxalacetate catalyzed by malic enzyme has been used to gain information on the catalytic mechanism of this enzyme. With Mn2+ as the activator, an active-site residue with a pK of 5.4 must be protonated for oxalacetate decarboxylation and ionized for the oxidative decarboxylation of L-malate. With Mg2+ as the metal, this pK is 6, and, at high pH, V/K for L-malate decreases when groups with pKs of 7.8 and 9 are deprotonated. The group at 7.8 is a neutral acid (thought to be water coordinated to Mg2+), while the group at 9 is a cationic acid such as lysine. The V profile for reaction of malate shows these pKs displaced outward by 1.4 pH units, since the rate-limiting step is normally TPNH release, and the chemical reaction, which is pH sensitive, is 25 times faster. TPN binding is decreased by ionization of a group with pK 9.3 or protonation of a group with pK 5.3. The pH variation of the Km for Mg shows that protonation of a group with pK 8.7 (possibly SH) decreases metal binding in the presence of malate by a factor of 1400, and in the absence of malate by a factor of 20. A catalytic mechanism is proposed in which hydride transfer is accompanied by transfer of a proton to the group with pK 5.4-6, and enolpyruvate is protonated by water coordinated to the Mg2+ (pK 7.8) after decarboxylation and release of CO2.  相似文献   

17.
Although numerous data exist concerning tritium kinetic isotope effect in enzymic reactions, little is related to the metabolism of tritiated prostaglandins. The present study reports an evaluation of the kinetic isotope effect which occurs during the oxidation of 15-hydroxyl group of tritium-labeled prostaglandins E2 and F2 alpha by the 15-hydroxyprostaglandin dehydrogenase and during the oxidation of 9-hydroxyl group of tritium-labeled prostaglandin F2 alpha by the 9-hydroxyprostaglandin dehydrogenase. The large kinetic isotope effect tends to limit the validity of the dehydrogenase assay using tritium-labeled prostaglandins as substrate. However these assays can be considered to be an indication of relative enzyme activity.  相似文献   

18.
The kinetic parameters of noradrenaline uptake by chromaffin granule ghosts have been measured at external pH values between 6.5 and 8.5. The log of the Km for noradrenaline decreased linearly with pH with a slope of -1.0, indicating that the observed affinity increase of originated in deprotonation of a single chemical group. This result is interpreted as showing that the neutral form of monoamines is the true substrate for the amine carrier. The Km of the carrier for the neutral form of noradrenaline was calculated as 0.1 microM. The maximal velocity, V, of the uptake reaction was constant from pH 6.5 to 8.0 and decreased at more alkaline pH values. Since the proton electrochemical gradient delta muH+ generated by the membrane H+-pump was independent of the pH in the range 6.5-9.5, the pH dependence of the maximal velocity of uptake reflects the pH profile of the monoamine transporter.  相似文献   

19.
Before this study, the human norepinephrine transporter (hNET) was the only member of the biogenic amine neurotransmitter transporter family that had not been demonstrated to be a functional homo-oligomer. Here, using two forms of the transporter, I155C and hNET-myc, with distinct antigenicity and inhibitor sensitivity, we demonstrated that hNET exists as a homo-oligomer. hNET I155C is a functional mutant and is sensitive to inactivation by the sulfhydryl reagent [2-(trimethylammonium)ethyl]methanethiosulfonate, while hNET-myc is resistant to inactivation by this reagent. Coimmunoprecipitation of these two forms demonstrated that a physical interaction exists between norepinephrine transporter monomers. Further characterization of this physical interaction has revealed that the activity of norepinephrine transporters depends on interactions between monomers. Because norepinephrine transporters and serotonin transporters are the only two members of the neurotransmitter transporter family endogenously expressed in the cell membrane of the same cells, placental syncytiotrophoblasts, we tested the ability of norepinephrine transporters and serotonin transporters to associate and function in a hetero-oligomeric form. Similarly, coexpression of hNET-myc with serotonin transporter-FLAG showed a physical interaction in coimmunoprecipitation assays. However, coexpression of serotonin and norepinephrine transporters did not sensitize norepinephrine transporter activity to inhibition by citalopram, a selective serotonin transport inhibitor. Thus, the norepinephrine transporter-serotonin transporter physical association did not produce functional consequences. Based on this, we propose that the transporters for biogenic amine neurotransmitters interact functionally in homo- but not hetero-oligomeric forms.  相似文献   

20.
At alkaline pH, swine pepsinogen is reversibly inactivated in a transition which involves the cooperative release of two protons from the molecule and is governed by a pK = 9. Stopped flow kinetic studies on the absorbance changes accompanying this reaction show that it can be resolved into two steps, with increasing pH; a slow conformational change, whose amplitude follows the ionisation curve of one group of pK = 9.9, followed by a rapid pH dependent conformational change, linked to a group of pK = 8.2. The pH dependence of the rate of the slow step is interpreted to show the presence of a protonated group which cannot ionise in the neutral form of the zymogen, but is in slow equilibrium with a form where it titrates with a pK = 6.8. At the same time, a histidine in the amino terminal region of the protein becomes reactive to diethyl pyrocarbonate, suggesting this to be the group which triggers the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号