首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy.  相似文献   

3.
《Autophagy》2013,9(10):1692-1701
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.  相似文献   

4.
Wen-jian Lin  Hong-yu Kuang 《Autophagy》2014,10(10):1692-1701
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.  相似文献   

5.
6.
Autophagy is a self-digestion process that degrades intracellular structures in response to stresses leading to cell survival. When autophagy is prolonged, this could lead to cell death. Generation of reactive oxygen species (ROS) through oxidative stress causes cell death. The role of autophagy in oxidative stress-induced cell death is unknown. In this study, we report that two ROS-generating agents, hydrogen peroxide (H(2)O(2)) and 2-methoxyestradiol (2-ME), induced autophagy in the transformed cell line HEK293 and the cancer cell lines U87 and HeLa. Blocking this autophagy response using inhibitor 3-methyladenine or small interfering RNAs against autophagy genes, beclin-1, atg-5 and atg-7 inhibited H(2)O(2) or 2-ME-induced cell death. H(2)O(2) and 2-ME also induced apoptosis but blocking apoptosis using the caspase inhibitor zVAD-fmk (benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone) failed to inhibit autophagy and cell death suggesting that autophagy-induced cell death occurred independent of apoptosis. Blocking ROS production induced by H(2)O(2) or 2-ME through overexpression of manganese-superoxide dismutase or using ROS scavenger 4,5-dihydroxy-1,3-benzene disulfonic acid-disodium salt decreased autophagy and cell death. Blocking autophagy did not affect H(2)O(2)- or 2-ME-induced ROS generation, suggesting that ROS generation occurs upstream of autophagy. In contrast, H(2)O(2) or 2-ME failed to significantly increase autophagy in mouse astrocytes. Taken together, ROS induced autophagic cell death in transformed and cancer cells but failed to induce autophagic cell death in non-transformed cells.  相似文献   

7.
We aimed to determine the oxidative stress and antioxidant status in preeclamptic placenta. Also, we investigated the apoptotic index of villous trophoblast and proliferation index of cytotrophoblasts. The study included 32 pregnant with preeclampsia and 31 normotensive healthy pregnant women. Malondialdehyde (MDA) and total antioxidant status (TAS) levels were measured in the placenta. For detection of apoptosis and proliferation in trophoblast, apoptosis protease activating factor 1 (APAF-1) and Ki-67 were used. Placental MDA levels in preeclamptic women were significantly higher than normal pregnancies (p = 0.002). There was no significant difference between the groups in the TAS levels of placenta (p = 0.773). Also, the apoptotic index in villous trophoblasts increased (p < 0.001), but proliferation index did not change in preeclampsia (p = 0.850). Increased oxidative stress and apoptosis in pathological placenta are not balanced by antioxidant systems and proliferation mechanisms.  相似文献   

8.
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that triggers caspase-independent apoptosis. We describe here the cloning and characterization of a novel AIF-homologous molecule designated AMID (AIF-homologous mitochondrion-associated inducer of death). AMID lacks a mitochondrial localization sequence but shares significant homology with AIF and NADH oxidoreductases from bacteria to mammalian species. Immunofluorescent staining and biochemical experiments indicated that AMID was co-localized with mitochondria. Overexpression of AMID induced cell death with characteristic apoptotic morphology. Furthermore, AMID-induced apoptosis was independent of caspase activation and p53 and was not inhibited by Bcl-2. These findings suggest that AMID induces a novel caspase-independent apoptotic pathway.  相似文献   

9.
Parkinson's disease is characterized by a deficiency in motor cortex modulation due to degeneration of pigmented dopaminergic neurons of the substantia nigra projecting to the striatum. These neurons are particularly susceptible to oxidative stress, perhaps because of their dopaminergic nature. Like all catecholamines, dopamine is easily oxidized, first to a quinone intermediate and then to dopaminochrome (DAC), a 5-dihydroxyindole tautomer, that is cytotoxic in an oxidative stress-dependent manner. Here we show, using the murine mesencephalic cell line MN9D, that DAC causes cell death by apoptosis, illustrated by membrane blebbing, Annexin V, and propidium iodide labeling within 3 h. In addition, DAC causes oxidative damage to DNA within 3 h, and positive terminal deoxynucleotidyl transferase dUTP nick end labeling fluorescence by 24 h. DAC, however, does not induce caspase 3 activation and its cytotoxic actions are not prevented by the pan-caspase inhibitor, Z-VAD-fmk. DAC-induced cytotoxicity is limited by the PARP1 inhibitor, 5-aminoisoquinolinone, supporting a role for apoptosis-inducing factor (AIF) in the apoptotic process. Indeed, AIF is detected in the nuclear fraction of MN9D cells 3 h after DAC exposure. Taken together these results demonstrate that DAC induces cytotoxicity in MN9D cells in a caspase-independent apoptotic manner, likely triggered by oxidative damage to DNA, and involving the translocation of AIF from the mitochondria to the nucleus.  相似文献   

10.
Isoegomaketone (IK) is an essential oil component of Perilla frutescens (L.), but the mechanism by which IK induces apoptosis has never been studied. The purpose of this study was to elucidate the IK-induced apoptotic pathway in DLD1 human colon cancer cells. We observed that IK treatment over 24 h significantly inhibited cell viability in a dose-dependent manner. We also found that IK triggered cleavage of PARP. Moreover, IK treatment resulted in cleavage of caspase-8, -9, and -3 in a dose- and time-dependent manner. IK treatment also resulted in cleavage of Bid and translocation of Bax, and triggered the release of cytochrome c from the mitochondria to the cytoplasm. Furthermore, it resulted in the translocation of apoptosis inducing factor (AIF), a caspase-independent mitochondrial apoptosis factor, from the mitochondria into the nucleus. Overall, these results suggest that IK induces apoptosis through caspase-dependent and capase-independent pathways in DLD1 cells.  相似文献   

11.
12.
Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin (Δyfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in Δyfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.  相似文献   

13.
Molecular iodine (I2) is known to inhibit the induction and promotion of N-methyl-n-nitrosourea-induced mammary carcinogenesis, to regress 7,12-dimethylbenz(a)anthracene-induced breast tumors in rat, and has also been shown to have beneficial effects in fibrocystic human breast disease. Cytotoxicity of iodine on cultured human breast cancer cell lines, namely MCF-7, MDA-MB-231, MDA-MB-453, ZR-75-1, and T-47D, is reported in this communication. Iodine induced apoptosis in all of the cell lines tested, except MDA-MB-231, shown by sub-G1 peak analysis using flow cytometry. Iodine inhibited proliferation of normal human peripheral blood mononuclear cells; however, it did not induce apoptosis in these cells. The iodine-induced apoptotic mechanism was studied in MCF-7 cells. DNA fragmentation analysis confirmed internucleosomal DNA degradation. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling established that iodine induced apoptosis in a time- and dose-dependent manner in MCF-7 cells. Iodine-induced apoptosis was independent of caspases. Iodine dissipated mitochondrial membrane potential, exhibited antioxidant activity, and caused depletion in total cellular thiol content. Western blot results showed a decrease in Bcl-2 and up-regulation of Bax. Immunofluorescence studies confirmed the activation and mitochondrial membrane localization of Bax. Ectopic Bcl-2 overexpression did not rescue iodine-induced cell death. Iodine treatment induces the translocation of apoptosis-inducing factor from mitochondria to the nucleus, and treatment of N-acetyl-L-cysteine prior to iodine exposure restored basal thiol content, ROS levels, and completely inhibited nuclear translocation of apoptosis-inducing factor and subsequently cell death, indicating that thiol depletion may play an important role in iodine-induced cell death. These results demonstrate that iodine treatment activates a caspase-independent and mitochondria-mediated apoptotic pathway.  相似文献   

14.
This report is designed to explore the exact molecular mechanism by which artesunate (ART), a semisynthetic derivative of the herbal antimalaria drug artemisinin, induces apoptosis in human lung adenocarcinoma (ASTC‐a‐1 and A549) cell lines. ART treatment induced ROS‐mediated apoptosis in a concentration‐ and time‐dependent fashion accompanying the loss of mitochondrial potential and subsequent release of Smac and AIF indicative of intrinsic apoptosis pathway. Blockage of casapse‐8 and ‐9 did not show any inhibitory effect on the ART‐induced apoptosis, but which was remarkably prevented by silencing AIF. Of the utmost importance, ART treatment induced the activation of Bak but not Bax, and silencing Bak but not Bax remarkably inhibited ART‐induced apoptosis and AIF release. Furthermore, although ART treatment did not induced a significant down‐regulation of voltage‐dependent anion channel 2 (VDAC2) expression and up‐regulation of Bim expression, silencing VDAC2 potently enhanced the ART‐induced Bak activation and apoptosis which were significantly prevented by silencing Bim. Collectively, our data firstly demonstrate that ART induces Bak‐mediated caspase‐independent intrinsic apoptosis in which Bim and VDAC2 as well as AIF play important roles in both ASTC‐a‐1 and A549 cell lines, indicating a potential therapeutic effect of ART for lung cancer. J. Cell. Physiol. 227: 3778–3786, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The Ras-association domain family (RASSF) comprises six members (RASSF1-6) that each harbors a RalGDS/AF-6 (RA) and Sav/RASSF/Hippo (SARAH) domain. The RASSF proteins are known as putative tumor suppressors but RASSF6 has not yet been studied. We have here characterized human RASSF6. Although RASSF6 has RA domain, it does not bind Ki-Ras, Ha-Ras, N-Ras, M-Ras, or TC21 under the condition that Nore1 (RASSF5) binds these Ras proteins. The message of RASSF6 is detected by RT-PCR in several cell lines including HeLa, MCF-7, U373, A549, and HepG2 cells, but the protein expression is low. The enhanced expression of RASSF6 causes apoptosis in HeLa cells. RASSF6 activates Bax and induces cytochrome C release. Caspase-3 activation is also induced, but the caspase inhibitor, Z-VAD-FMK, does not block RASSF6-mediated apoptosis. Apoptosis-inducing factor and endonuclease G are released from the mitochondria upon expression of RASSF6 and their releases are not blocked by Z-VAD-FMK. The knock down of RASSF6 partially blocks tumor necrosis factor-alpha-induced cell death in HeLa cells. These findings indicate that RASSF6 is implicated in apoptosis in HeLa cells and that it triggers both caspase-dependent and caspase-independent pathways.  相似文献   

16.
Tseng JK  Tang PC  Ju JC 《Theriogenology》2006,66(5):1073-1082
The precise physiological causes that result in reduced development of oocytes after heat shock (HS) are not clear. In this study, apoptosis, heat shock protein70 (hsp70), and in vitro development of porcine oocytes were evaluated after HS. Porcine cumulus-oocyte complexes (COCs) were subjected to in vitro maturation for 42 h. The matured oocytes were then heated at 41.5 degrees C for 0 h (control, C0h), 1 h (HS1h), 2 h (HS2h), or 4 h (HS4h). An additional group of oocytes was cultured for 4 h without HS (control, C4h). In Experiment 1, expression of hsp70 was detected by Western-blotting and no difference between controls and HS groups was observed. In Experiment 2, apoptosis of matured oocytes after HS was examined by Annexin V-FITC and TUNEL. No significant TUNEL-positive signals were detected in the heated oocytes compared to the controls, but the intensity of Annexin V-FITC labeling among different groups increased with length of HS and in vitro culture (P<0.05). Oocytes were parthenogenetically activated by an electric pulse plus 6-DMAP (Experiment 3). Mean (+/-S.E.M.) embryonic development in HS2h (cleavage: 42+/-29%; blastocyst: 11+/-10%) and HS4h (cleavage: 36+/-28%; blastocyst: 11+/-8%) were decreased when compared to those in C0h (cleavage: 63+/-12%; blastocyst: 24+/-14%) and C4h (cleavage: 66+/-8%; blastocyst: 21+/-11%). Numbers of blastocysts with TUNEL-positive signals were similar among groups, but the signals increased before the eight-cell stage in HS groups (P<0.05). In conclusion, developmental competence of matured pig oocytes was compromised after heat shock, but it was not closely associated with the expression of oocyte hsp70. However, there may be a link between apoptosis and developmental competence of porcine oocytes.  相似文献   

17.
Mitochondrial DNA (mtDNA) is located in close proximity of the respiratory chains, which are the main cellular source of reactive oxygen species (ROS). ROS can induce oxidative base lesions in mtDNA and are believed to be an important cause of the mtDNA mutations, which accumulate with aging and in diseased states. However, recent studies indicate that cumulative levels of base substitutions in mtDNA can be very low even in old individuals. Considering the reduced complement of DNA repair pathways available in mitochondria and higher susceptibility of mtDNA to oxidative damage than nDNA, it is presently unclear how mitochondria manage to maintain the integrity of their genetic information in the face of the permanent exposure to ROS. Here we show that oxidative stress can lead to the degradation of mtDNA and that strand breaks and abasic sites prevail over mutagenic base lesions in ROS-damaged mtDNA. Furthermore, we found that inhibition of base excision repair enhanced mtDNA degradation in response to both oxidative and alkylating damage. These observations suggest a novel mechanism for the protection of mtDNA against oxidative insults whereby a higher incidence of lesions to the sugar–phosphate backbone induces degradation of damaged mtDNA and prevents the accumulation of mutagenic base lesions.  相似文献   

18.
Oxidative stress and apoptosis in metal ion-induced carcinogenesis   总被引:12,自引:0,他引:12  
Epidemiological evidence suggests that exposure to certain metals causes carcinogenesis. The mechanisms of metal-induced carcinogenesis have been pursued in chemical, biochemical, cellular, and animal models. Significant evidence has accumulated that oxidative stress may be a common pathway in cellular responses to exposure to different metals. For example, in the last few years evidence in support of a correlation between the generation of reactive oxygen species, DNA damage, tumor promotion, and arsenic exposure has strengthened. This article summarizes the current literature on metal-mediated oxidative stress, apoptosis, and their relation to metal-mediated carcinogenesis, concentrating on arsenic and chromium.  相似文献   

19.
氧化应激诱发大脑皮质神经元凋亡的体外实验研究   总被引:1,自引:0,他引:1  
Yu RT  Gao LD  Guan P 《中国应用生理学杂志》2001,17(2):108-108,120,128
既往研究表明 ,神经细胞死亡容易坏死而较少发生凋亡 ,1994年 ,Ratan等培养神经细胞发现有大量神经元发生凋亡 ,但其凋亡机制尚不清楚。本实验采用氧化应激方法作用于原代培养的新生大鼠大脑皮质神经元 ,并进行凋亡指标的检测 ,以对其凋亡机制进行探讨。1 材料与方法(1)大鼠大脑皮质神经元的原代培养 取新生 1d的SD大鼠 ,在无菌条件下分离皮质 ,置于盛有Hank’s液 DMEM (1∶1)小烧杯中 ,将组织剪碎并过滤至离心管中 ,加入 0 .2 5 %胰酶 2ml消化 10min ,弃去胰酶溶液 ,将DMEM液 胎牛血清 (4∶1)加入离心管中 ,…  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号