首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choroideremia (McK30310), an X-linked hereditary retinal dystrophy, causes night-blindness, progressive peripheral visual field loss, and, ultimately, central blindness in affected males. The location of choroideremia on the X chromosome is unknown. We have used restriction fragment length polymorphisms from the X chromosome to determine the regional localization of choroideremia by linkage analysis in families with this disease. One such polymorphic locus, DXYS1, located on the long arm (Xq) within bands q13-q21, shows no recombination with choroideremia at lod = 5.78. Therefore, with 90% probability, choroideremia maps within 9 centiMorgans (cM) of DXYS1. Another polymorphic locus, DXS11, located within Xq24-q26, also shows no recombination with choroideremia, although at a smaller lod score of 1.54 (90% probability limit theta less than 30 cM). This linkage with DXS11, a marker that is distal to DXYS1, suggests that the locus for choroideremia is also distal to DXYS1 and lies between these two markers in the region Xq13-q24. These results provide regional mapping for the disease that may be useful for prenatal diagnosis and, perhaps ultimately, for isolating the gene locus for choroideremia.  相似文献   

2.
Allan-Herndon syndrome. II. Linkage to DNA markers in Xq21.   总被引:12,自引:2,他引:10       下载免费PDF全文
The original family with the Allan-Herndon type of X-linked mental retardation has been investigated for linkage by using DNA probes spanning the length of the X chromosome. Available for study, over 3 generations, were 13 affected males, three obligate carriers, and three normal sons of the obligate carriers. Initial disease-to-marker analysis suggested linkage to three markers (DXYS2 [7b], DXS250 [GMGX22], and DXS3 [p19-2]) located in Xq21. All three exhibited the same maximum lod score of 2.3 at a maximum theta of .05. Multipoint analysis using LINKMAP and a set of four DNA markers (DXYS1-DXYS2-DXS3-DXS94) gave a multipoint lod score of 3.58 for a location of the Allan-Herndon syndrome near locus DXYS1 (pDP34). Therefore, our data indicate that the gene for the Allan-Herndon syndrome is likely located in Xq21.  相似文献   

3.
Linkage localization of X-linked Charcot-Marie-Tooth disease.   总被引:7,自引:3,他引:4  
Charcot-Marie-Tooth disease (CMT), also known as hereditary motor and sensory neuropathy, is a heterogeneous group of slowly progressive, degenerative disorders of peripheral nerve. X-linked CMT (CMTX) (McKusick 302800), a subdivision of type I, or demyelinating, CMT is an X-linked dominant condition with variable penetrance. Previous linkage analysis using RFLPs demonstrated linkage to markers on the proximal long and short arms of the X chromosome, with the more likely localization on the proximal long arm of the X chromosome. Available variable simple-sequence repeats (VSSRs) broaden the possibilities for linkage analysis. This paper presents new linkage data and recombination analysis derived from work with four VSSR markers--AR, PGKP1, DXS453, and DXYS1X--in addition to analysis using RFLP markers described elsewhere. These studies localize the CMTX gene to the proximal Xq segment between PGKP1 (Xq11.2-12) and DXS72 (Xq21.1), with a combined maximum multipoint lod score of 15.3 at DXS453 (theta = 0).  相似文献   

4.
The CA repeat microsatellite DXS456, with a heterozygosity of 77%, has been localized by multipoint linkage analysis in relation to 20 other genetic markers. DXS456 mapped to a 4.2-cM interval defined by the flanking markers DXS178 and DXS287. The maximum likelihood order of markers, cen-(DXYS1X/DXYS13X/DXYS2X/DXYS12X)-DXS366 -DXS178-DXS456-DXS287-DXS358-DXS267- qter, is favored by odds greater than 1000:1 over the subset of most likely alternative orders. Linkage of DXS456 can be inferred for at least six disease genes that are known to be linked to markers in the region Xq21.31-Xq25 and the marker will serve as an important index point for orienting these and other disease and marker loci in the region.  相似文献   

5.
Common congenital malformations such as cleft lip and cleft palate are in most cases multifactorial in origin, involving both environmental and genetic components. Molecular biology techniques have enabled the successful chromosomal localization of many mutant genes from disorders that exhibit simple Mendelian segregation, whether autosomally dominant (e.g., Huntington's disease), autosomal recessive (e.g., cystic fibrosis), or X-linked (e.g., Duchenne muscular dystrophy). Studying the genetic aspect of multifactorial disorders is more complex. It requires a model family or families within which the common multifactorial phenotype is displayed as a single gene defect. Such a model has been recently exploited in the form of a large Icelandic family (over 280 members) exhibiting X-linked secondary cleft palate (CP) and ankyloglossia (A) (tongue-tied) as a single gene mutation. Using this family and the large bank of well-characterized DNA probes available for the human X chromosome, the gene for CP + A was localized by linkage analysis to Xq13-q21.1 (LOD score = 3.07, linked to anonymous probe DXYS1). Further fine mapping, using other X probes from this region (confirmed by analysis of DNA from a deletion cell-line) has placed the gene between markers DXYS12 and DXS17 (LOD score = 4.1) at Xq21.3-q22. The approximate distance between these two probes is 5 centimorgans (cM), equivalent to approximately 5 million base pairs. Now that the limits of genetic linkage have been fully tested and there are two markers flanking the defect locus, strategies are being pursued to clone the gene responsible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Summary The q26–q28 region of the human X chromosome contains several important disease loci, including the locus for the fragile X mental retardation syndrome. We have characterized new polymorphic DNA markers useful for the genetic mapping of this region. They include a new BclI restriction fragment length polymorphism (RFLP) detected by the probe St14-1 (DXS52) and which may therefore be of diagnostic use in hemophilia A families. A linkage analysis was performed in fragile X families and in large normal families from the Centre d'Etude du Polymorphisme Humain (CEPH) by using seven polymorphic loci located in Xq26-q28. This multipoint linkage study allowed us to establish the order centromere-DXS100-DXS86-DXS144-DXS51-F9-FRAX-(DXS52-DXS15). Together with other studies, our results define a cluster of nine loci that are located in Xq26-q27 and map within a 10 to 15 centimorgan region. This contrasts with the paucity of markers (other than the fragile X locus) between the F9 gene in q27 and the G6PD cluster in q28, which are separated by about 30% recombination.  相似文献   

7.
X-linked hydrocephalus is a well-defined disorder which accounts for > or = 7% of hydrocephalus in males. Pathologically, the condition is characterized by stenosis or obliteration of the aqueduct of Sylvius. Previous genetic linkage studies have suggested the likelihood of genetic homogeneity for this condition, with close linkage to the DXS52 and F8C markers in Xq28. We have investigated a family with typical X-linked aqueductal stenosis, in which no linkage to these markers was present. In this family, close linkage was established to the DXS548 and FRAXA loci in Xq27.3. Our findings demonstrate that X-linked aqueductal stenosis may result from mutations at two different loci on the X chromosome. Caution is indicated in using linkage for the prenatal diagnosis of X-linked hydrocephalus.  相似文献   

8.
We have ordered nine polymorphic DNA markers within detailed map of the proximal part of the human X chromosome long arm, extending from band q11 to q22, by use of both physical mapping with a panel of rodent-human somatic hybrids and multipoint linkage analysis. Analysis of 44 families (including 17 families from the Centre d'Etude du Polymorphisme Humain) provided highly significant linkage data for both order and estimation of map distances between loci. We have obtained the following order: DXS1-DXS159-DXYS1-DXYS12-DXS3-(DXS94 , DXS178)-DXYS17. The most probable location of DXYS2 is between DXS159 and DXS3, close to DXYS1 and DXYS12. The high density of markers (nine loci within 30 recombination units) and the improvement in the estimation of recombination frequencies should be very useful for multipoint mapping of disease loci in this region and for diagnostic applications.  相似文献   

9.
Choroideremia: further evidence for assignment of the locus to Xq13–Xq21   总被引:10,自引:3,他引:7  
Summary Choroideremia is an X-linked hereditary retinal dystrophy leading to blindness in early adulthood. RFLP analyses in three Danish families were consistent with close linkage between choroideremia and the locus DXYS1, located at Xq13–Xq21. Measurable linkage was found between choroideremia and DXS17, at Xq22. Furthermore, choroideremia was diagnosed in a boy with an interstitial deletion at Xq13–Xq21, strongly suggesting the assignment of the locus for choroideremia to this region of the X chromosome. The deletion also covered DXYS1, but did not include DXS17.  相似文献   

10.
Genetic Linkage Heterogeneity in Myotubular Myopathy   总被引:3,自引:1,他引:2       下载免费PDF全文
Myotubular myopathy is a severe congenital disease inherited as an X-linked trait (MTM1; McKusick 31040). It has been mapped to the long arm of chromosome X, to the Xq27-28 region. Significant linkage has subsequently been established for the linkage group comprised of DXS304, DXS15, DXS52, and F8C in several studies. To date, published linkage studies have provided no evidence of genetic heterogeneity in severe neonatal myotubular myopathy (XLMTM). We have investigated a family with typical XLMTM in which no linkage to these markers was found. Our findings strongly suggest genetic heterogeneity in myotubular myopathy and indicate that great care should be taken when using Xq28 markers in linkage studies for prenatal diagnosis and genetic counseling.  相似文献   

11.
Summary A large kindred with the X-linked dominant form of peroneal muscular atrophy (Charcot-Marie-Tooth disease) was analyzed for individual variation in the length of DNA fragments after restriction endonuclease digestion. A systematic search was performed for linkage with a series of cloned single-copy DNA sequences of known regional assignment to the human X chromosome. Close linkage was found with the pDP34 probe (DXYS1 locus, Xq13-q21), suggesting that the gene responsible for the disease is located on the proximal long arm of the X chromosome.  相似文献   

12.
Summary A linkage study of 24 families with hypohidrotic (anhidrotic) ectodermal dysplasia (HED) has been performed. The previously suggested linkage to DXYS1 has been confirmed, and linkage to probes DXS14 and DXS3 has been established. We suggest that the HED locus lies in the centromeric region between DXYS1 on the long arm and DXS14 on the short arm of the X chromosome, probably on proximal Xq.  相似文献   

13.
Summary The oto-palado-digital syndrome (OPD) is a rare X-linked disease with diagnostic skeletal features, conduction deafness, cleft palate and mild mental retardation. Differences in clinical presentation between families have led investigators to classify OPD into two subtypes: type I and type II. A linkage study performed in one family segregating for OPD I has recently suggested linkage to three marker loci: DXS15, DXS52 at Xq28, and DXS86 at Xq26. We have investigated an additional OPD I family for linkage by using distal chromosome Xq DNA probes. The linkage data and the analysis of recombination events that have occurred in this family excluded, definitively, the Xq26 region for OPD I, and provide further support for mapping the mutant gene close to the cluster of tightly linked markers DXS15, DXS52 and DXS305 at Xq28.  相似文献   

14.
A resource family of pigs has been constructed by using a boar of Göttingen miniature pig and two sows of Meishan pig as parents. In the construction of the family, two F1 males and 18 F1 females were intercrossed to generate 143 F2 offspring. The members of the family were genotyped using 243 genetic markers including 26 markers developed in our laboratory in order to generate a linkage map of markers for use in detecting quantitative trait loci (QTLs) in the family. The markers consisted of 237 microsatellites, five PRE-1 markers, and one RFLP marker. The linkage map was revealed to cover all 18 autosomes and the X chromosome; and the total length of the sex-averaged linkage map was calculated to be 2561 ·9 c m . Four out of the 26 markers developed in our laboratory ex-ended the current linkage map at the termini of chromosomes 1p, 5p, 11p, and Xq. The linkage maps of all the chromosomes except for chromosome 1 were found to be longer in females than in males. Concerning chromosome 1, the length of the linkage map showed no difference between females and males, which was attributed to low recombination rates between markers localized in the centromeric region in females. The average ratio of female-to-male recombination was calculated to be 1 ·55.  相似文献   

15.
The pseudoautosomal region of the human X and Y chromosomes is subject to frequent X-Y recombination during male meiosis. We report the finding of two pseudoautosomal loci, DXYS20 and DXYS28, characterized by highly informative restriction fragment length polymorphisms (RFLPs). The pseudoautosomal character of DXYS20 and DXYS28 was formally demonstrated by comparing their transmission to 45,X and to normal individuals. Studies of the inheritance of these loci reveal that the pseudoautosomal region, though highly recombinogenic, is subject to marked recombinational interference in male meiosis; no double recombinants were observed in 143 triply informative meioses, and the coefficient of coincidence is likely less than 0.45. In female meiosis, linkage of these pseudoautosomal RFLPs to strictly sex-linked RFLPs on the short arm of the X is readily detected; the genetic length of the pseudoautosomal region in female meiosis is at least 4 cM but not more than 18 cM. The genetic map of the human X chromosome is now defined from near the short-arm telomere to band q28 on the long arm. Locus DXYS20, which maps near the X and Y short-arm telomeres, is composed of long tandem arrays of 61-bp repeats. Occasional, seemingly random base-pair substitutions within these arrays of 61-bp repeats, in combination with marked variation in the size of the array, generate the high degree of DNA polymorphism at DXYS20.  相似文献   

16.
The locus responsible for X-linked, nonsyndromic cleft palate and/or ankyloglossia (CPX) has previously been mapped to the proximal long arm of the human X chromosome between Xq21.31 and q21.33 in an Icelandic kindred. We have extended these studies by analyzing an additional 14 informative markers in the family as well as including several newly investigated family members. Recombination analysis indicates that the CPX locus is more proximal than previously thought, within the interval Xq21.1-q21.31. Two recombinants place DXYS1X as the distal flanking marker, while one recombinant defines DXS326 as the proximal flanking marker, an interval of less than 5 cM. Each of the flanking markers recombines with the CPX locus, giving 2-point lod scores of Zmax = 4.16 at θ = 0.08 (DXS326) and Zmax = 5.80 at θ = 0.06 (DXYS1X).  相似文献   

17.
Multipoint linkage analysis in Menkes disease.   总被引:1,自引:0,他引:1       下载免费PDF全文
Linkage analyses were performed in 11 families with X-linked Menkes disease. In each family more than one affected patient had been diagnosed. Forty informative meioses were tested using 11 polymorphic DNA markers. From two-point linkage analyses high lod scores are seen for DXS146 (pTAK-8; maximal lod score 3.16 at recombination fraction [theta] = .0), for DXS1 (p-8; maximal lod score 3.44 at theta = .0), for PGK1 (maximal lod score 2.48 at theta = .0), and for DXS3 (p19-2; maximal lod score 2.90 at theta = .0). This indicates linkage to the pericentromeric region. Multilocus linkage analyses of the same data revealed a peak for the location score between DXS146(pTAK-8) and DXYS1X(pDP34). The most likely location is between DXS159 (cpX289) and DXYS1X(pDP34). Odds for this location relative to the second-best-supported region, between DXS146(pTAK-8) and DXS159 (cpX289), are better than 74:1. Visualization of individual recombinant X chromosomes in two of the Menkes families showed the Menkes locus to be situated between DXS159(cpX289) and DXS94(pXG-12). Combination of the present results with the reported absence of Menkes symptoms in male patients with deletions in Xq21 leads to the conclusion that the Menkes locus is proximal to DXSY1X(pDP34) and located in the region Xq12 to Xq13.3.  相似文献   

18.
Various polymorphic markers with a random distribution along the X chromosome were used in a linkage analysis performed on a family with apparently Xlinked recessive inheritance of neural tube defects (NTD). The lod score values were used to generate an exclusion map of the X chromosome; this showed that the responsible gene was probably not located in the middle part of Xp or in the distal region of Xq. A further refining of these results was achieved by haplotype analysis, which indicated that the gene for X-linked NTD was located either within Xp21.1-pter, distal from the DMD locus, or in the region Xq12–q24 between DXS106 and DXS424. Multipoint linkage analysis revealed that the likelihood for gene location is highest for the region on Xp. The region Xq26–q28, which has syntenic homology with the segment of the murine X chromosome carrying the locus for bent tail (Bn), a mouse model for X-linked NTD, is excluded as the location for the gene underlying X-linked NTD in the present family. Thus, the human homologue of the Bn gene and the present defective gene are not identical, suggesting that more than one gene on the X chromosome plays a role in the development of the neural tube.  相似文献   

19.
The Lowe oculocerebrorenal syndrome (OCRL) is characterized by congenital cataract, mental retardation, and defective renal tubular function. A map assignment of OCRL to Xq24-q26 has been made previously by linkage analysis with DXS42 at Xq24-q26 (theta = 0, z = 5.09) and with DXS10 at Xq26 (theta = 0, z = 6.45). Two additional families were studied and three additional polymorphisms were identified at DXS42 by using a 35-kb sequence isolated with the probe detecting the original polymorphism at DXS42. With additional OCRL families made informative for DXS42, theta remained 0 with z = 6.63; and for DXS10 theta = 0.03 and z = 7.07. Evidence for placing OCRL at Xq25 also comes from a female with Lowe syndrome and an X;3 translocation. We have used the Xq25 breakpoint in this patient to determine the position of OCRL relative to the two linked markers. Each derivative chromosome was isolated away from its normal counterpart in somatic cell hybrids. DXS42 was mapped to the derivative chromosome X containing Xpterq25, and DXS10 was mapped to the derivative chromosome 3 containing Xq25-qter. The markers DXS10 and DXS42 therefore show tight linkage with OCRL in six families and flank the Xq25 breakpoint in a female patient with an X;3 translocation. Linkage analysis with flanking markers was used to assess OCRL carrier status in women at risk. Results, when compared with carrier determination by ophthalmologic examination, indicated that the slit-lamp exam can be a sensitive and specific method of carrier determination in many cases.  相似文献   

20.
Etiological heterogeneity in X-linked spastic paraplegia.   总被引:12,自引:4,他引:8       下载免费PDF全文
We describe a large family (K313) having 12 males affected with X chromosome-linked recessive hereditary spastic paraplegia (HSP). The disease phenotype in K313 is characterized by hyperreflexia and a spastic gait, but intelligence is normal. Carrier females have normal gait and unremarkable neurologic profiles. Eight widely spaced X-linked DNA markers were used to genotype 43 family members. In contrast to a published study of another family, in whom complete linkage of X-linked recessive HSP to distal chromosome Xq markers DXS15 and DXS52 was reported, we observed complete linkage with two DNA markers, pYNH3 and DXS17, located on the middle of the long arm of the X chromosome. These data have been combined with linkage data from a large reference panel of normal families to localize the new X-chromosome marker, pYNH3, and to provide evidence of significant locus heterogeneity between phenotypically distinct forms of X-linked recessive HSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号