首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
IRAK-4 plays an essential role in Toll-like receptor (TLR)/IL-1 receptor signaling. However, its signaling and regulation mechanisms have remained elusive. We have reported previously that stimulation of TLR2, TLR4 or TLR9, but not TLR3, leads to downregulation of IRAK-4 protein. Here, we show that expression of MyD88 leads to downregulation of endogenous as well as exogenously expressed IRAK-4 protein in HEK293 cells. Expression of TRIF did not cause IRAK-4 downregulation although it induced NF-kappaB activation. Expression of either a deletion mutant of MyD88 lacking its death domain or MyD88s, neither of which induced NF-kappaB activation, did not lead to IRAK-4 downregulation. MyD88-induced downregulation was observed in an IRAK-4 mutant lacking the kinase domain, but not in another mutant lacking the death domain. These results demonstrate that downregulation of IRAK-4 requires activation of the MyD88-dependent pathway and that the death domains of both MyD88 and IRAK-4 are important for this downregulation.  相似文献   

4.
Oxidized low density lipoprotein (OxLDL) has multiple proatherogenic effects, including induction of apoptosis. We have recently shown that OxLDL markedly downregulates insulin-like growth factor-1 receptor (IGF-1R) in human aortic smooth muscle cells, and that IGF-1R overexpression blocks OxLDL-induced apoptosis. We hypothesized that specific OxLDL-triggered signaling events led to IGF-1R downregulation and apoptosis. We examined OxLDL signaling pathways and found that neither IGF-1R downregulation nor the proapoptotic effect was blocked by inhibition of OxLDL-triggered extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), or peroxisome proliferator-activated receptor gamma (PPARgamma) signaling pathways, as assessed using specific inhibitors. However, antioxidants, polyethylene glycol catalase, superoxide dismutase, and Trolox completely blocked OxLDL downregulation of IGF-1R and OxLDL-induced apoptosis. Nordihydroguaiaretic acid, AA-861, and baicalein, which are lipoxygenase inhibitors and also have antioxidant activity, blocked IGF-1R downregulation and apoptosis as well as reactive oxygen species (ROS) production. These results suggest that OxLDL enhances ROS production possibly through lipoxygenase activity, leading to IGF-1R downregulation and apoptosis. Furthermore, anti-CD36 scavenger receptor antibody markedly inhibited OxLDL-induced IGF-1R downregulation and apoptosis as well as ROS production. In conclusion, our data demonstrate that OxLDL downregulates IGF-1R via redox-sensitive pathways that are distinct from OxLDL signaling through MAPK- and PPARgamma-involved pathways but may involve a CD36-dependent mechanism.  相似文献   

5.
6.
Nuclear factor-kappa B (NF-κB) is a critical regulator of multiple biological functions including innate and adaptive immunity and cell survival. Activation of NF-κB is tightly regulated to preclude chronic signaling that may lead to persistent inflammation and cancer. Ubiquitination of key signaling molecules by E3 ubiquitin ligases has emerged as an important regulatory mechanism for NF-κB signaling. Deubiquitinases (DUBs) counteract E3 ligases and therefore play a prominent role in the downregulation of NF-κB signaling and homeostasis. Understanding the mechanisms of NF-κB downregulation by specific DUBs such as A20 and CYLD may provide therapeutic opportunities for the treatment of chronic inflammatory diseases and cancer.  相似文献   

7.
Fertilization in mammals stimulates a series of Ca(2+) oscillations that continue for 3-4 h. Cell-cycle-dependent changes in the ability to release Ca(2+) are one mechanism that leads to the inhibition of Ca(2+) transients after fertilization. The downregulation of InsP(3)Rs at fertilization may be an additional mechanism for inhibiting Ca(2+) transients. In the present study we examine the mechanism of this InsP(3)R downregulation. We find that neither egg activation nor Ca(2+) transients are necessary or sufficient for the stimulation of InsP(3)R downregulation. First, parthenogenetic activation fails to stimulate downregulation. Second, downregulation persists when fertilization-induced Ca(2+) transients and egg activation are inhibited using BAPTA. Third, downregulation can be induced in immature oocytes that do not undergo egg activation. Other than fertilization, the only stimulus that downregulated InsP(3)Rs was microinjection of the potent InsP(3)R agonist adenophostin A. InsP(3)R downregulation was inhibited by the cysteine protease inhibitor ALLN but MG132 and lactacystin were not effective. Finally, we have injected maturing oocytes with adenophostin A and produced MII eggs depleted of InsP(3)Rs. We show that sperm-induced Ca(2+) signaling is inhibited in such InsP(3)R-depleted eggs. These data show that InsP(3)R binding is sufficient for downregulation and that Ca(2+) signaling at fertilization is mediated via the InsP(3)R.  相似文献   

8.
Previous reports suggest that PKC plays an important role in regulating myogenesis. However, the regulatory signaling pathways are not fully understood. We examined the effects of PKC downregulation on signaling events during skeletal muscle differentiation. We found that downregulation of PKC results in increased myogenesis in C2C12 cells as measured by creatine kinase activity and myogenin expression. We showed that, during differentiation, downregulation of PKC expression results in increased tyrosine phosphorylation of FAK, Cas, and paxillin, concomitant with enhanced Cas-CrkII complex formation, which leads to activation of JNK2. But in proliferated muscle cells, PKC inhibition results in FAK and Cas tyrosine dephosphorylation. Further, disruption of actin cytoskeleton by cytochalasin D prevents the activation of FAK and Cas as well as the formation of Cas-CrkII complex stimulated by PKC downregulation during muscle cell differentiation. Finally, we observed that PKC downregulation increases the tyrosine phosphorylation of focal adhesion associated proteins. Based on the above data, we propose that PKC downregulation results in enhanced tyrosine phosphorylation of FAK, Cas, and paxillin, thus promoting the establishment of Cas-CrkII complex, leading to activation of JNK and that these interactions are dependent upon the integrity of actin cytoskeleton during muscle cell differentiation. Data presented here significantly contribute to elucidating the regulatory role of PKC in myogenesis possibly through integrin signaling pathway.  相似文献   

9.
Genetic studies have implicated Notch signaling in the maintenance of pancreatic progenitors. However, how Notch signaling regulates the quiescent, proliferative or differentiation behaviors of pancreatic progenitors at the single-cell level remains unclear. Here, using single-cell genetic analyses and a new transgenic system that allows dynamic assessment of Notch signaling, we address how discrete levels of Notch signaling regulate the behavior of endocrine progenitors in the zebrafish intrapancreatic duct. We find that these progenitors experience different levels of Notch signaling, which in turn regulate distinct cellular outcomes. High levels of Notch signaling induce quiescence, whereas lower levels promote progenitor amplification. The sustained downregulation of Notch signaling triggers a multistep process that includes cell cycle entry and progenitor amplification prior to endocrine differentiation. Importantly, progenitor amplification and differentiation can be uncoupled by modulating the duration and/or extent of Notch signaling downregulation, indicating that these processes are triggered by distinct levels of Notch signaling. These data show that different levels of Notch signaling drive distinct behaviors in a progenitor population.  相似文献   

10.
The sensitivity of the crossveins of the Drosophila wing to reductions in BMP signaling provides a valuable system for characterizing members of this signaling pathway. We demonstrate here two reasons for that sensitivity. First, the initial stage of posterior crossvein development depends on BMP signaling but is independent of EGF signaling. This is the opposite of the longitudinal veins, which rely of EGF signaling for their initial specification. Second, BMP signaling in the posterior crossvein depends on Decapentaplegic (Dpp) at a stage when it is being produced in the longitudinal veins. Thus, the posterior crossvein will be especially vulnerable to reductions in the levels or range of Dpp signaling. We investigated the roles of the BMP receptor Thickveins (Tkv) and the BMP inhibitor Short gastrulation (Sog) in allowing this long-range signaling. Expression of both is downregulated in the developing posterior crossvein. The Tkv downregulation depends on BMP signaling and may provide a positive feedback by allowing the spread of Dpp. The Sog downregulation is independent of BMP signaling; Sog misexpression experiments indicate that this prepattern is essential for posterior crossvein development. However, this requirement can be overridden by co-misexpression of the BMP agonist Cv-2, indicating the presence of as yet unknown cues; we discuss possible candidates.  相似文献   

11.
12.
Growth factor receptors induce a transient increase in reactive oxygen species (ROS) levels upon receptor binding to promote signaling through oxidation of protein tyrosine phosphatases (PTPs). Most studies have focused on NADPH oxidases as the dominant source of ROS to induce PTP oxidation. A potential additional regulator of growth factor-induced PTP oxidation is p66Shc, which stimulates mitochondrial ROS production. This study explores the contribution of p66Shc-induced ROS to PTP oxidation and growth factor receptor-induced signaling and migration through analyses of p66Shc-KO fibroblasts and cells with siRNA-mediated p66Shc downregulation. Analyses of PDGFβR phosphorylation in two independent cell systems demonstrated a decrease in PDGFβR phosphorylation after p66Shc deletion or downregulation, which occurred in a partially site-selective and antioxidant-sensitive manner. Deletion of p66Shc also reduced PDGF-induced activation of downstream signaling of Erk, Akt, PLCγ-1, and FAK. Importantly, reduced levels of p66Shc led to decreased oxidation of DEP1, PTP1B, and SHP2 after PDGF stimulation. The cell biological relevance of these findings was indicated by demonstration of a significantly reduced migratory response in PDGF-stimulated p66Shc-KO fibroblasts, consistent with reduced PDGFβR-Y1021 and PLCγ-1 phosphorylation. Downregulation of p66Shc also reduced EGFR phosphorylation and signaling, indicating that the positive role of p66Shc in receptor tyrosine kinase signaling is potentially general. Moreover, downregulation of the mitochondrial hydrogen peroxide scavenger peroxiredoxin 3 increased PDGFβR phosphorylation, showing that mitochondrial ROS in general promote PDGFβR signaling. This study thus identifies a previously unrecognized role for p66Shc in the regulation of PTP oxidation controlling growth factor-induced signaling and migration. In more general terms, the study indicates a regulatory role for mitochondrial-derived ROS in the control of PTP oxidation influencing growth factor signaling.  相似文献   

13.
ErbB receptors (EGFR (ErbB1), ErbB2, ErbB3, and ErbB4) are important regulators of normal growth and differentiation, and they are involved in the pathogenesis of cancer. Following ligand binding and receptor activation, EGFR is endocytosed and transported to lysosomes where the receptor is degraded. This downregulation of EGFR is a complex and tightly regulated process. The functions of ErbB2, ErbB3, and ErbB4 are also regulated by endocytosis to some extent, although the current knowledge of these processes is sparse. Impaired endocytic downregulation of signaling receptors is frequently associated with cancer, since it can lead to increased and uncontrolled receptor signaling. In this review we describe the current knowledge of ErbB receptor endocytic downregulation. In addition, we outline how ErbB receptors can escape endocytic downregulation in cancer, and we discuss how targeted anti-cancer therapy may induce endocytic downregulation of ErbB receptors.  相似文献   

14.
15.
Signaling by cell surface receptors is often turned off by receptor endocytosis and downregulation. However, it appears that some signaling pathways continue to fire from within cells. A recent study now suggests that a late endosomal p14/MP1-MAPK scaffold complex is critical for the ERK signaling pathway.  相似文献   

16.
We recently showed that the Apert Ser252Trp fibroblast growth factor receptor-2 (FGFR-2) mutation causes premature osteoblast differentiation and increased subperiosteal calvaria bone matrix formation. To gain further insight into the cellular mechanisms involved in these effects, we examined the effects of the mutation on the expression of FGFRs in relation to cell proliferation and differentiation markers in vivo and in vitro, and we analyzed the underlying signaling pathways in mutant cells. Immunohistochemical analysis of the Apert calvaria suture showed that the Ser252Trp FGFR-2 mutation increased type 1 collagen, osteocalcin, and osteopontin expression in preosteoblasts compared to normal, whereas cell growth was not affected. The premature osteoblast differentiation induced by the mutation was associated with lower than normal FGFR-2 immunolabeling, whereas FGFR-1 and FGFR-3 levels were not decreased. Immunocytochemical analysis in osteoblasts isolated from Apert coronal suture showed that the Ser252Trp mutation induced constitutive downregulation of FGFR-2 in mutant cells. Western blot analysis of FGFRs in immortalized mutant osteoblastic cells confirmed that the mutation induced FGFR-2 downregulation. FGFR-2 mRNA levels were not altered in mutant cells, indicating that FGFR-2 downregulation resulted from receptor internalization rather than from changes in receptor mRNA. The signaling pathway involved in FGFR-2 downregulation was studied using specific inhibitors of FGF signaling molecules. The selective PKC inhibitor calphostin C markedly reduced FGFR-2 protein levels in mutant cells, in contrast to the p38 MAP kinase inhibitor SB 203580 or the Erk 1,2 MAP kinase inhibitor PD-98059, showing that PKC is involved in FGFR-2 regulation, but not in FGFR-2 downregulation in mutant cells. The results indicate that the premature osteoblast differentiation induced by the FGFR-2 Ser252Trp mutation is associated with a PKC-independent downregulation of FGFR-2 in human calvaria cells.  相似文献   

17.
Cell surface heparan sulfate proteoglycans (HSPGs) play important roles in morphogen gradient formation and cell signaling. Bone morphogenetic protein (BMP) signaling is dysregulated in fibrodysplasia ossificans progressiva (FOP), a disabling disorder of progressive heterotopic bone formation. Here, we investigated the role of HSPG glycosaminoglycan (GAG) side chains on BMP signaling and found increased total and HSPG-specific GAG chain levels and dysregulation in HSPG modulation of BMP signaling in FOP lymphoblastoid cells (LCLs). Specifically, HSPG profiling demonstrated abundant mRNA and protein levels of glypican 1 and syndecan 4 on control and FOP LCLs, with elevated core protein levels on FOP cells. Targeted downregulation of glypican 1 core protein synthesis by siRNA enhanced BMP signaling in control and FOP cells, while reduction of syndecan 4-core protein synthesis decreased BMP signaling in control, but not FOP cells. These results suggest that FOP cells are resistant to the stimulatory effects of cell surface HSPG GAG chains, but are susceptible to the inhibitory effects, as shown by downregulation of glypican 1. These data support that HSPG modulation of BMP signaling is altered in cells from patients with FOP and that altered HSPG-related BMP signaling may play a role in the pathogenesis of the disease.  相似文献   

18.
19.
Lipopolysaccharide (LPS) induces inflammatory activation through TLR4 (toll-like receptor-4)/MD-2 (myeloid differentiation-2)/CD14 (cluster of differentiation-14) complex. Although optimal LPS signaling is required to activate our innate immune systems against gram-negative bacterium, excessive amount of LPS signaling develops a detrimental inflammatory response in gram-negative bacterial infections. Downregulation of surface TLR4 expression is one of the critical mechanisms that can restrict LPS signaling. Here, we found that membrane-anchored CD14 is required for LPS-induced downregulation of TLR4 and MD-2 in CHO cells. Moreover, pretreatment of the cells with sterol-binding agent filipin reduced LPS-induced TLR4 downregulation, suggesting the involvement of caveolae-mediated endocytosis pathway. Involvement of caveolae in LPS-induced TLR4 endocytosis was further confirmed by immunoprecipitation. Thus, our data indicate that caveolae-dependent endocytosis pathway is involved in LPS-induced TLR4 downregulation and that this is dependent on membrane-anchored CD14 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号