首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonucleic Acid Transcriptases in Sendai Virions and Infected Cells   总被引:4,自引:17,他引:4       下载免费PDF全文
Sendai virions contain an enzyme which catalyzes the incorporation of ribonucleotides into ribonucleic acid (RNA). Enzyme activity was optimal at pH 8.0 and 28 C; otherwise conditions were similar to those reported for Newcastle disease virion (NDV) RNA polymerase. The initial rate of RNA synthesis by the Sendai virion enzyme was about 10 pmoles per mg of protein per hr, but after 3 hr of incubation the rate increased about fivefold. The virion enzyme was compared with an RNA polymerase in the microsomal fraction of infected cells. Both enzymes made predominantly single-stranded RNA which was complementary in base sequences to 50S virion RNA. Most of the RNA synthesized by the virion polymerase sedimented at 16S, but the product of the microsomal enzyme sedimented at about 8S.  相似文献   

2.
In this paper, the repulsion effect of superinfecting virion by infected cells is studied by a reaction diffusion equation model for virus infection dynamics. In this model, the diffusion of virus depends not only on its concentration gradient but also on the concentration of infected cells. The basic reproduction number, linear stability of steady states, spreading speed and existence of traveling wave solutions for the model are discussed. It is shown that viruses spread more rapidly with the repulsion effect of infected cells on superinfecting virions, than with random diffusion only. For our model, the spreading speed of free virus is not consistent with the minimal traveling wave speed. With our general model, numerical computations of the spreading speed show that the repulsion of superinfecting virion promotes the spread of virus, which confirms, not only qualitatively but also quantitatively, the experimental result of Doceul et al. (Science 327:873–876, 2010).  相似文献   

3.
In cytomegalovirus-infected cells, the rate of protein synthesis was detected as two peaks. One occurred during the early phase of infection, 0 to 36 h postinfection, and the other occurred during the late phase, after the initiation of viral DNA synthesis. Double-isotopic-label difference analysis demonstrated that host and viral proteins were synthesized simultaneously during both phases. In the early phase, approximately 70 to 90% of the total proteins synthesized were host proteins, whereas approximately 10 to 30% were viral, even at a multiplicity of infection of 20 PFU/cell. Virus-related proteins or glycoproteins were referred to as infected-cell specific (ICS). Two ICS glycoproteins (gp145 and 100) were clearly detectable and were synthesized preferentially in the early phase of infection. Their synthesis was concomitant with stimulation of the protein synthesis rate. In the late phase of infection, approximately 50 to 60% of the total protein synthesis was viral and approximately 40 to 50% was host. The ICS proteins and glycoproteins detected during the late phase of infection were viral structural proteins. Infectious virus was not detectable until 48 to 72 h postinfection. An inhibitor of viral DNA synthesis, phosphonoacetic acid, prevented the appearance of the late-phase ICS proteins and glycoproteins, but there was little or no effect on early ICS glycoprotein synthesis. Radiolabeled ICS proteins and glycoproteins were identified by their relative rates of synthesis, by their different electrophoretic mobilities compared with those of host proteins and host glycoproteins, and by their similar electrophoretic mobilities compared to those of proteins and glycoproteins associated with virions and dense bodies of cytomegalovirus. Structural viral antigens in the infected-cell extracts were removed by immunoprecipitation, using F(ab')(2) fragments of cytomegalovirus-specific antibodies, and identified as described above. The last two criteria were used to identify viral structural ICS proteins and glycoproteins. Although approximately 35 structural proteins were found to be associated with purified virions and dense bodies, the continued synthesis of host cell proteins complicated their identification in infected cells. Nevertheless, seven of the nine structural glycoproteins were identified as ICS glycoproteins.  相似文献   

4.
5.
For viruses that mature by a budding process, the envelope glycoproteins are considered the major determinants for the site of virus release from polarized epithelial cells. Viruses are usually released from that membrane domain where the viral surface glycoproteins are transported to. We here report that measles virus has developed a different maturation strategy. Measles virus was found to be released from the apical membrane domain of polarized epithelial cells, though the surface glycoproteins H and F were transported in a nonpolarized fashion and to the basolateral membrane domain, respectively.  相似文献   

6.
7.
8.
Subacute sclerosing panencephalitis (SSPE) is a demyelinating central nervous system disease caused by a persistent measles virus (MV) infection of neurons and glial cells. There is still no specific therapy available, and in spite of an intact innate and adaptive immune response, SSPE leads inevitably to death. In order to select effective antiviral short interfering RNAs (siRNAs), we established a plasmid-based test system expressing the mRNA of DsRed2 fused with mRNA sequences of single viral genes, to which certain siRNAs were directed. siRNA sequences were expressed as short hairpin RNA (shRNA) from a lentiviral vector additionally expressing enhanced green fluorescent protein (EGFP) as an indicator. Evaluation by flow cytometry of the dual-color system (DsRed and EGFP) allowed us to find optimal shRNA sequences. Using the most active shRNA constructs, we transduced persistently infected human NT2 cells expressing virus-encoded HcRed (piNT2-HcRed) as an indicator of infection. shRNA against N, P, and L mRNAs of MV led to a reduction of the infection below detectable levels in a high percentage of transduced piNT2-HcRed cells within 1 week. The fraction of virus-negative cells in these cultures was constant over at least 3 weeks posttransduction in the presence of a fusion-inhibiting peptide (Z-Phe-Phe-Gly), preventing the cell fusion of potentially cured cells with persistently infected cells. Transduced piNT2 cells that lost HcRed did not fuse with underlying Vero/hSLAM cells, indicating that these cells do not express viral proteins any more and are “cured.” This demonstrates in tissue culture that NT2 cells persistently infected with MV can be cured by the transduction of lentiviral vectors mediating the long-lasting expression of anti-MV shRNA.The neurodegenerative human disease subacute sclerosing panencephalitis (SSPE) occurs with an incidence rate of approximately 1:10,000 after infection with wild-type measles virus (MV) (4, 38). The course of the illness is quite variable, usually lasting from 1 to 3 years. Much more rapid forms that lead to death within a few months as well as prolonged courses with a duration of more than 20 years have been described (40). Neuropathological findings include diffuse encephalitis, affecting both the gray and white matters, characterized by perivascular cuffing and diffuse lymphocytic infiltrations. Neurons, oligodendrocytes, fibrous astrocytes, and some brain microvascular endothelial cells contain large aggregates of intranuclear inclusion bodies consisting of MV nucleocapsid structures (1, 16). In these persistently infected cells, viral ribonucleoprotein particles (RNPs) replicate intracellularly, whereas the budding of complete viruses and cell-cell fusion are not observed. A characteristic feature of this central nervous system disease is that the expression of viral envelope proteins (matrix [M], fusion [F], and hemagglutinin [H] proteins) is restricted by various means. In particular, the M protein and the cytoplasmic part of the F protein harbor single or hypermutations or deletions, which prevent their proper expression (2, 3, 9, 10). The lack of M reduces budding, supports cell fusion, and enhances the intracellular replication of RNPs (7, 8, 32, 37). As far as is known, the cell-to-cell spread of infectivity in the human brain occurs in the presence of normal cellular and strong humoral antiviral immune responses with very high anti-MV antibody titers in the cerebrospinal fluid. This, however, cannot prevent virus spread.A variety of approaches to the treatment of SSPE have been attempted, but an evaluation of their efficiency has been extremely difficult, since clinical trials are based on small numbers of patients, the course of SSPE is highly variable, and spontaneous remissions may also occur. Intrathecal or intraventricular administration of alpha interferon, inosiplex, and/or ribavirin is a common regimen, but despite many efforts, the establishment of an effective therapy has not been possible. Since the immune systems of the patients appear normal, and given the fact that virus spreads in the form of intracellular RNPs, a promising specific therapy must target this intracellular replication of MV.RNA interference (RNAi) may provide such a means and has already been used successfully to inhibit the expression of a number of viral infections, including the Ebola, influenza A, hepatitis B and C, human immunodeficiency, respiratory syncytial, and West Nile viruses, and several RNAi-based therapeutics are already in preclinical test phases (for reviews, see references 6 and 24). Small interfering RNAs (siRNAs) have also been described to be active against MV (20, 29, 32), including an MV isolate from an SSPE patient (SSPE-Kobe-1) (28). In the latter approach, the authors generated recombinant adenoviruses (rAdV) expressing siRNA against MV L mRNA and assessed them in freshly infected Vero/SLAM cells. In contrast to this work, we constructed lentiviral vectors expressing short hairpin RNAs (shRNAs) and transduced persistently infected human NT2 cells with these vectors. This lentiviral approach provided the proof of principle that a preexisting persistent MV infection can be cured by shRNA.  相似文献   

9.
Dengue Virions and Antigens in Brain and Serum of Infected Mice   总被引:8,自引:2,他引:6       下载免费PDF全文
The temporal relationships of the production of infectious dengue-2 virus and its antigens were investigated in intracerebrally infected suckling mice. Infectious virus, a slowly sedimenting noninfectious hemagglutinin (SHA), and a noninfectious soluble complement-fixing antigen (SCF) were found in the brain. Serum contained high concentrations of SCF antigen relative to infectivity when compared to SCF to infectivity ratios in the brain. Degradation of virions by Tween-80 and ether produced two antigens with sedimentation characteristics similar to the noninfectious antigens occurring naturally in infected tissues. However, the virionderived SHA differed from native SHA when examined by electron microscopy and by equilibrium centrifugation in cesium chloride. Virion-derived SCF (as well as the virions and both SHA antigens) was denatured by sodium lauryl sulfate (SLS) and 2-mercaptoethanol (2-ME), whereas native SCF retained its complement-fixing activity. SLS and 2-ME treatment of dengue-1 and dengue-2 sucrose-acetone antigens increased their serotypic specificity. The hemagglutinin present in sucrose-acetone antigens was predominantly native SHA.  相似文献   

10.
The appearance of Sindbis virus-envelope glycoproteins in the surfaces of chicken embryo fibroblasts was studied by an indirect labeling technique. This technique involved treating infected cells sequentially with rabbit immunoglobulin G (IgG) specific for Sindbis virus followed by hemocyanin-conjugated goat (anti-rabbit IgG) IgG; surface replicas of these cells were then prepared and examined in the electron microscope. As early as 2 h after infection (and at least 1 h before mature virions were released), newly synthesized virus-envelope glycoproteins were detected at the cell surface. By 3 h after infection, cell surface membranes were extensively modified by the insertion of the Sindbis glycoproteins. When infected cells were prefixed with glutaraldehyde before labeling, the glycoproteins were distributed fairly evenly over the cell surface, although a slight clustering was observed on cells labeled early in infection. However, no evidence for large-scale clustering of virus glycoproteins corresponding to patches of budding virus was observed. Similar results were found with unfixed cells labeled at 4 C. However, when unfixed cells were labeled at 37 C, the glycoproteins were shown to be in discrete clusters, demonstrating that these glycoprotein antigens can diffuse laterally through the cell membrane at this temperature.  相似文献   

11.
Cytoplasmic extracts of Vero cells infected with wild-strain Edmonston measles virus were found to contain two and probably three distinct species of nucleocapsids. Species sedimenting at 200 and 110S contained RNA which sedimented at 50 and 16 to 18S, respectively. The third nucleocapsid species which sedimented at 170S was not present in all experiments and was not characterized in detail. Essentially all 200 and 170S, as well as a portion of the 110S, nucleocapsids were membrane associated and probably present in part in cell-associated virions. Five of six plaque purified strains derived from wild-type Edmonston virus produced only 200S nucleocapsids. One of these five plaque-purified strains subsequently produced both 200 and 110S nucleocapsids after being passaged by using undiluted inocula. These results suggest that measles virus may produce distinct classes of defective virus containing short nucleocapsids and subgenomic viral RNA.  相似文献   

12.
Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation.Download video file.(118M, mp4)  相似文献   

13.
Measles virus protein synthesis has been analyzed in acutely and persistently infected cells. To assess the role of measles in subacute sclerosing panencephalitis (SSPE), measles viral proteins synthesized in vivo or in vitro were tested for reactivity with serum from a guinea pig(s) immunized with measles virus and sera from patients with SSPE. Guinea pig antimeasles virus serum immunoprecipitates the viral polypeptides of 78,000 molecular weight (glycosylated [G]), 70,000 molecular weight (phosphorylated [P]), 60,000 molecular weight (nucleocapsid [N]), and 35,000 molecular weight (matrix [M]) from cells acutely infected with measles virus as well as from chronically infected cells, but in the latter case, immunoprecipitated M protein has a reduced electrophoretic migration. Sera of SSPE patients immunoprecipitated all but the G protein in acutely infected cells and only the P and N proteins from chronically infected cells. In immunoprecipitates of viral polypeptides synthesized in a reticulocyte cell-free translation system, in response to mRNA from acutely or persistently infected cells, the 78,000-molecular-weight form of the G protein was not detected among the cell-free products of either mRNA. Guinea pig antimeasles virus serum immunoprecipitated P, N, and M polypeptides from the products of either form of mRNA, whereas SSPE serum immunoprecipitated the P and N polypeptides but not the M polypeptide. The differences in immunoreactivity of the antimeasles virus antiserum and the SSPE serum are discussed in terms of possible modifications of measles virus proteins in SSPE.  相似文献   

14.
Schwann Cell Surface Proteins and Glycoproteins   总被引:3,自引:3,他引:0  
Abstract: To identify surface sialoglycoproteins of rat Schwann cells and to compare molecular weights of these sialoglycoproteins with those present in rat peripheral nervous system myelin, we prepared Schwann cells from sciatic nerves of 1–3-day-old rats and cultured them in monolayer. Surface sialoglycoproteins of the cultured cells were tritium-labeled by the periodateborohydride procedure and compared with sialoglycoproteins of adult rat peripheral nervous system myelin by fluorography following polyacrylamide slab gel electrophoresis in sodium dodecyl sulfate. Three radioactive bands with apparent molecular weights of 114,000–132,000, 105,000–115,000, and 44,000–56,000 were observed in both the Schwann cell and myelin preparations. Bands of similar apparent molecular weights were noted in Schwann cells metabolically radiolabeled with d -[1,6-3H]glucosamine. A band co-migrating with myelin P0 glycoprotein was the most intensely radiolabeled of all peptides in periodate-B3H4?treated myelin, but was present in only trace amounts in periodate-B3H4? or d -[1,6-3H]glucosamine radiolabeled Schwann cells. Many presumably non-myelin glycoproteins were identified in the cultured Schwann cells by the periodate-borohydride procedure and by incubation of the cells with d -[1,6-3H]glucosamine. An immunoprecipitation technique was used to detect radiolabeled peptides in a nonionic detergent extract of freshly prepared, surface-radioiodinated Schwann cells that were bound by a rabbit anti-Schwann cell serum preabsorbed with rat fibroblasts. Many radioactive peptides were detected in the immunoprecipitate, but the two most intensely radiolabeled had apparent molecular weights of 105,000–115,000 and 95,000–106,000. This study has identified a number of glycoproteins synthesized by cultured rat Schwann cells which resemble in apparent molecular weight the glycoproteins expressed in rat peripheral nervous system myelin and has defined Schwann cell surface proteins recognized by a specific anti-rat Schwann cell antiserum.  相似文献   

15.
UL31 and UL34 of herpes simplex virus type 1 form a complex necessary for nucleocapsid budding at the inner nuclear membrane (INM). Previous examination by immunogold electron microscopy and electron tomography showed that pUL31, pUL34, and glycoproteins D and M are recruited to perinuclear virions and densely staining regions of the INM where nucleocapsids bud into the perinuclear space. We now show by quantitative immunogold electron microscopy coupled with analysis of variance that gD-specific immunoreactivity is significantly reduced at both the INM and outer nuclear membrane (ONM) of cells infected with a UL34 null virus. While the amount of gM associated with the nuclear membrane (NM) was only slightly (P = 0.027) reduced in cells infected with the UL34 null virus, enrichment of gM in the INM at the expense of that in the ONM was greatly dependent on UL34 (P < 0.0001). pUL34 also interacted directly or indirectly with immature forms of gD (species expected to reside in the endoplasmic reticulum or nuclear membrane) in lysates of infected cells and with the cytosolic tail of gD fused to glutathione S-transferase in rabbit reticulocyte lysates, suggesting a role for the pUL34/gD interaction in recruiting gD to the NM. The effects of UL34 on gD and gM localization were not a consequence of decreased total expression of gD and gM, as determined by flow cytometry. Separately, pUL31 was dispensable for targeting gD and gM to the two leaflets of the NM but was required for (i) the proper INM-versus-ONM ratio of gD and gM in infected cells and (ii) the presence of electron-dense regions in the INM, representing nucleocapsid budding sites. We conclude that in addition to their roles in nucleocapsid envelopment and lamina alteration, UL31 and UL34 play separate but related roles in recruiting appropriate components to nucleocapsid budding sites at the INM.Herpesvirus virions comprise a nucleocapsid containing genomic viral DNA, a proteinaceous tegument layer surrounding the nucleocapsid, and a virion envelope surrounding the tegument. The envelope of extracellular herpes simplex virus (HSV) virions contains glycoproteins gB, gC, gD, gE, gI, gG, gH, gK, gL, and gM (23, 51).As viewed by electron microscopy, nascent virions form as the nucleocapsid buds through densely staining regions of the nuclear membrane (NM) (21, 41). Electron tomograms of HSV perinuclear virions compared to those of extracellular virions infer that the former contain glycoproteins of considerably less glycosylation and a relatively sparse tegument layer compared to their counterparts in mature extracellular virions (6). The lower levels of glycosylation in HSV perinuclear virions are consistent with the fact that the lumen of the perinuclear space is continuous with that of the endoplasmic reticulum. Thus, the polysaccharide moieties of virion glycoproteins become fully processed as virions access Golgi enzymes during their egress to the extracellular space. Although the full proteome of the nascent perinuclear virion is unknown, immunogold studies have shown that they contain at least pUL31, pUL34, pUS3, gB, gC, gD, gH, gM, and the VP16 and pUL11 tegument proteins in addition to the proteins that comprise the viral capsid (4, 5, 15, 25, 37, 40, 47, 50, 55).The UL31 and UL34 gene products of HSV-1 (pUL31 and pUL34, respectively) form a complex that localizes at the inner and outer NMs (INM and ONM, respectively) of infected cells (40). Both proteins are essential for nucleocapsid envelopment at the INM and become incorporated into nascent virions when nucleocapsids bud through the INM into the perinuclear space (39, 40, 42). The proteins and their essential role in nucleocapsid envelopment are conserved in all herpesvirus subfamilies (14, 20, 32, 45). pUL31 of HSV-1 is a mostly hydrophobic phosphoprotein that is held in close approximation to the nucleoplasmic face of the INM by interaction with pUL34, an integral membrane protein of type II orientation (33, 40, 46, 56). The first 248 amino acids of pUL34 are predicted to reside in the nucleoplasm or cytoplasm, depending on whether the protein localizes in the INM or ONM, respectively. This is followed by an approximately 22-amino acid transmembrane domain with up to 5 amino acids residing in the perinuclear space or lumen of the endoplasmic reticulum.In the most prominent model of herpesvirion egress, the envelope of the perinuclear virion fuses with the ONM, releasing the deenveloped nucleocapsid into the cytoplasm, where it subsequently buds into cytoplasmic membranous organelles such as the Golgi or trans-Golgi network (34, 49). This model is supported by the observation that pUL31 and pUL34 are located in the perinuclear virion but not extracellular virions (18, 40). Thus, these proteins are lost from the virion upon fusion of the virion envelope with the ONM. Also supporting this egress model is the observation that deletion of both gB and gH causes virions to accumulate aberrantly in the perinuclear space (15). The involvement of gH and gB is potentially satisfying because these proteins comprise essential components of the machinery that mediates fusion of the virion envelope with the plasma or endosomal membranes during the initiation of infection (9, 12, 16, 44, 52). Moreover, expression of a combination of gB, gD, gH, and gL is sufficient to mediate fusion of cell membranes, whereas coexpression with gM or gK inhibits this fusion (3, 8, 11). Although the mechanism of fusion is unclear, gD is known to bind viral receptors on cell surfaces, and the structure of gB indicates features reminiscent of other viral fusion proteins (24, 35, 48). gD has been shown to interact with gB and gH at least transiently, suggesting that these interactions may be important for the fusion reaction (1, 2). Thus, fusion between the nascent and mature virion envelopes with target membranes may share mechanistic similarities.On the other hand, it is likely that the two fusion events are mechanistically distinct because (i) single deletion of either gH or gB precludes viral entry and cell/cell fusion but does not cause nascent virions to accumulate in the perinuclear space (9, 16, 31, 43) and (ii) the activity of a viral kinase encoded by US3 is dispensable for entry but believed to promote fusion of the perinuclear virion and ONM (28, 40). Moreover, the lack of glycoproteins from the pseudorabies virus perinuclear virion suggests that fusion is mediated by an entirely different mechanism in this system (26).The current study focuses on how glycoproteins are incorporated into the nascent virion. We show that optimal recruitment of gD to both leaflets of the NM and gM to the INM requires pUL34 and pUL31. We also show that immature gD interacts with pUL34, suggesting a mechanism by which pUL34 might recruit gD to the NM.  相似文献   

16.
Membranes from cells infected with Sindbis virus had associated with them viral ribonucleic acid (RNA) polymerase and about 60 to 70% of the viral RNA labeled when short pulses were used. This RNA contained most of the replicative intermediate and replicative form of viral RNA found in the infected cells. The use of "Mg(2+) sarkosyl crystals" permitted the isolation of membrane-bound nucleic acids and allowed the demonstration that Sindbis virus RNA was synthesized on a membrane-viral RNA complex. Viral RNA from the infecting virions first became associated with the membranes during the latent period and, subsequently, slowly detached. The attachment of the viral RNA to the membranes did not require active viral RNA polymerase, since RNA from ts6, an RNA(-) temperature-sensitive mutant of Sindbis virus, associated with cellular membranes at a nonpermissive temperature. However, the subsequent detachment of the RNA from the membranes was restricted in the absence of viral RNA synthesis. The results indicate that association of viral RNA with cellular membranes may represent an early step occurring during the replication of Sindbis virus RNA.  相似文献   

17.
Abstract: Plasma membranes were isolated from C6 glioblastoma cells by two methods. In the first method cells were treated with concanavalin A and lysed in hypotonic medium. After partial separation of plasma membranes from other cell material, the lectin was displaced with a-methyl-D-mannoside. In the second method untreated cells or cells iodinated in a lactoperoxidase-catalyzed reaction were homogenized in isotonic medium. Membrane fractions obtaincd by either homogenization procedure were further purified by rate zonal and equilibrium centrifugations into linear density gradients. Disruption of the glioblastoma cell membrane gives rise to heterogeneous assemblies of mem- brane fragments. Two populations of plasma membranes were isolated from untreated and from iodinated cells: a "lighter")membrane fraction characterized by relatively lower sedimentation velocity and buoyant density, and a "heavier" membrane fraction of relatively faster sedimentation velocity and higher buoyant density. Both fractions showed electrophoretic patterns similar to those of 125I-labeled cell surface proteins. Their specific (Na++ K+)-ATPase activity was seven- to eightfold the homogenate activity (recovery, 13.1%). Both fractions were, however, still contaminated by smooth endo- plasmic reticulum, as judged from the activity 0: NADPH-dependent cytochrome c reductase (recovery, 2.4%). It is suggested that plasma membrane fragments present in the two fractions might differ in the organization of their structures, e.g., membrane vesicle intactness and membrane orientation.  相似文献   

18.
Envelope and thylakoid membranes from pea (Pisum sativum var. Laxton's Progress No. 9) chloroplasts were analyzed for the presence of glycoproteins using two different approaches. First, the sugar composition of delipidated membrane polypeptides was measured directly using gas chromatographic analysis. The virtual absence of sugars suggests that plastid membranes lack glycoproteins. Second, membrane polypeptides separated by sodium dodecyl sulfate gel electrophoresis were tested for reactivity toward three different lectins: Concanavalin A, Ricinus communis agglutinin, and wheat germ agglutinin. In each case, there was no reactivity between any of the lectins and the plastid polypeptides. Microsomal membranes from pea tissues were used as a positive control. Glycoproteins were readily detectable in microsomal membranes using either of the two techniques. From these results it was concluded that pea chloroplast membranes do not contain glycosylated polypeptides.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号