首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: Establishment of anterior–posterior polarity is one of the earliest decisions in cardiogenesis. Specification of anterior (outflow) and posterior (inflow) structures ensures proper connections between venous system and inflow tract and between arterial tree and outflow tract. The last few years have witnessed remarkable progress in our understanding of cardiac anteroposterior patterning. Molecular cloning and subsequent studies on RALDH2, the key embryonic retinaldehyde dehydrogenase in retinoic acid (RA) synthesis, provided the missing link between teratogenic studies on RA deficiency and excess and normal chamber morphogenesis. We discuss work establishing the foundations of our current understanding of the mechanisms of cardiac anteroposterior segmentation, the reasons why early evidence pointing to the role of RA in anteroposterior segmentation was overlooked, and the key experiments unraveling the role of RA in cardiac anteroposterior segmentation. We have also integrated recent experiments in a model of cardiac anteroposterior patterning in which RALDH2 expression determines anteroposterior boundaries in the heart field. genesis 31:97–104, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
The cardiac neural crest cells (CNCCs) have played an important role in the evolution and development of the vertebrate cardiovascular system: from reinforcement of the developing aortic arch arteries early in vertebrate evolution, to later orchestration of aortic arch artery remodeling into the great arteries of the heart, and finally outflow tract septation in amniotes. A critical element necessary for the evolutionary advent of outflow tract septation was the co‐evolution of the cardiac neural crest cells with the second heart field. This review highlights the major transitions in vertebrate circulatory evolution, explores the evolutionary developmental origins of the CNCCs from the third stream cranial neural crest, and explores candidate signaling pathways in CNCC and outflow tract evolution drawn from our knowledge of DiGeorge Syndrome. Birth Defects Research (Part C) 102:309–323, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Retinoic acid signaling and the evolution of chordates   总被引:1,自引:0,他引:1       下载免费PDF全文
In chordates, which comprise urochordates, cephalochordates and vertebrates, the vitamin A-derived morphogen retinoic acid (RA) has a pivotal role during development. Altering levels of endogenous RA signaling during early embryology leads to severe malformations, mainly due to incorrect positional codes specifying the embryonic anteroposterior body axis. In this review, we present our current understanding of the RA signaling pathway and its roles during chordate development. In particular, we focus on the conserved roles of RA and its downstream mediators, the Hox genes, in conveying positional patterning information to different embryonic tissues, such as the endoderm and the central nervous system. We find that some of the control mechanisms governing RA-mediated patterning are well conserved between vertebrates and invertebrate chordates, such as the cephalochordate amphioxus. In contrast, outside the chordates, evidence for roles of RA signaling is scarce and the evolutionary origin of the RA pathway itself thus remains elusive. In sum, to fully understand the evolutionary history of the RA pathway, future research should focus on identification and study of components of the RA signaling cascade in non-chordate deuterostomes (such as hemichordates and echinoderms) and other invertebrates, such as insects, mollusks and cnidarians.  相似文献   

4.
The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent outflow tract septation are critical events during vertebrate heart development. We have performed four modified differential display screens in the chick embryo to identify genes that may be involved in CNC, OFT, secondary heart field, and heart development. The screens included differential display of RNA isolated from three different axial segments containing premigratory cranial neural crest cells; of RNA from distal outflow tract, proximal outflow tract, and atrioventricular tissue of embryonic chick hearts; and of RNA isolated from left and right cranial tissues, including the early heart fields. These screens have resulted in the identification of the five cDNA clones presented here, which are expressed in the cardiac neural crest, outflow tract and developing heart in patterns that are unique in heart development.  相似文献   

5.
Signaling by retinoic acid (RA) is an important pathway in the development and homeostasis of vertebrate and invertebrate chordates, with a critical role in mesoderm patterning. Classical studies on the distribution of nuclear receptors of animals suggested that the family of RA receptors (RARs/NR1B) was restricted to chordates, while the family of RA X receptors (RXR/NR2B) was distributed from cnidarians to chordates. However, the accumulation of data from genome projects and studies in non-model species is questioning this traditional view. Here we discuss the evidence for non-chordate RA signaling systems in the light of recent advances in our understanding of carotene (pro-Vitamin A) metabolism and of the identification of potential RARs and members of the NR1 family in echinoderms and lophotrochozoan trematodes, respectively. We conclude, as have others before (Bertrand et al., 2004. Mol Biol Evol 21(10):1923-1937), that signaling by RA is more likely an ancestral feature of bilaterians than a chordate innovation.  相似文献   

6.
SUMMARY Vertebrate hearts have evolved from undivided tubular hearts of chordate ancestors. One of the most intriguing issues in heart evolution is the abrupt appearance of multichambered hearts in the agnathan vertebrates. To explore the developmental mechanisms behind the drastic morphological changes that led to complex vertebrate hearts, we examined the developmental patterning of the agnathan lamprey Lethenteron japonicum . We isolated lamprey orthologs of genes thought to be essential for heart development in chicken and mouse embryos, including genes responsible for differentiation and proliferation of the myocardium ( LjTbx20, LjTbx4/5 , and LjIsl1/2A ), establishment of left–right heart asymmetry ( LjPitxA ), and partitioning of the heart tube ( LjTbx2/3A ), and studied their expression patterns during lamprey cardiogenesis. We confirmed the presence of the cardiac progenitors expressing LjIsl1/2A in the pharyngeal and splanchnic mesoderm and the heart tube of the lamprey. The presence of LjIsl1/2A -positive cardiac progenitor cells in cardiogenesis may have permitted an increase of myocardial size in vertebrates. We also observed LjPitxA expression in the left side of lamprey cardiac mesoderm, suggesting that asymmetric expression of Pitx in the heart has been acquired in the vertebrate lineage. Additionally, we observed LjTbx2/3A expression in the nonchambered myocardium, supporting the view that acquisition of Tbx2/3 expression may have allowed primitive tubular hearts to partition, giving rise to multichambered hearts.  相似文献   

7.
Recent studies show that cell dispersal is a widespread phenomenon in the development of early vertebrate embryos. These cell movements coincide with major decisions for the spatial organization of the embryo, and they parallel genetic patterning events. For example, in the central nervous system, cell dispersal is first mainly anterior–posterior and subsequently dorsal–ventral. Thus, genes expressed in signaling centers of the embryo probably control cell movements, tightly linking cellular and genetic patterning. Cell dispersal might be important for the correct positioning of cells and tissues involved in intercellular signaling. The emergence of cell dispersal at the onset of vertebrate evolution indicates a shift from early, lineage-based cellular patterning in small embryos to late, movement-based cellular patterning of polyclones in large embryos. The conservation of the same basic body plan by invertebrate and vertebrate chordates suggests that evolution of the embryonic period preceding the phylotypic stage was by intercalary co-option of basic cell activities present in the ancestral metazoan cell.  相似文献   

8.
9.
Neural crest cells are multipotential cells that delaminate from the dorsal neural tube and migrate widely throughout the body. A subregion of the cranial neural crest originating between the otocyst and somite 3 has been called "cardiac neural crest" because of the importance of these cells in heart development. Much of what we know about the contribution and function of the cardiac neural crest in cardiovascular development has been learned in the chick embryo using quail-chick chimeras to study neural crest migration and derivatives as well as using ablation of premigratory neural crest cells to study their function. These studies show that cardiac neural crest cells are absolutely required to form the aorticopulmonary septum dividing the cardiac arterial pole into systemic and pulmonary circulations. They support the normal development and patterning of derivatives of the caudal pharyngeal arches and pouches, including the great arteries and the thymus, thyroid and parathyroids. Recently, cardiac neural crest cells have been shown to modulate signaling in the pharynx during the lengthening of the outflow tract by the secondary heart field. Most of the genes associated with cardiac neural crest function have been identified using mouse models. These studies show that the neural crest cells may not be the direct cause of abnormal cardiovascular development but they are a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Since, cardiac neural crest cells span from the caudal pharynx into the outflow tract, they are especially susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations as represented by the DiGeorge syndrome will necessarily require understanding development of the cardiac neural crest.  相似文献   

10.
Functional Morphology of the Heart in Fishes   总被引:2,自引:0,他引:2  
The systemic heart of fishes consists of four chambers in series,the sinus venosus, atrium, ventricle, and conus or bulbus. Valvesbetween the chambers and contraction of all chambers exceptthe bulbus maintain a unidirectional blood flow through theheart. The heart is composed of typical vertebrate cardiac muscle,although there may be minor differences in the distributionof spontaneously active cells, the rate and nature of spreadof excitatory waves, and the characteristics of resting andaction potentials between different fish and other vertebrates.Cholinergic fibers innervate the heart, except in hagfish whichhave aneural hearts. Fish hearts lack sympathetic innervation.The level of vagal tone varies considerably, and is affectedby many factors. In some fish the heart is essentially aneural(without vagal tone) during exercise and may resemble an isolatedmammalian ventricle with increased venous return causing increasedcardiac output. There are many mechanisms that could increasevenous return in exercising fish. rß-adrenergic receptorshave been located on the hearts of some fish, and changing levelsof catecholamines may play a role in regulating cardiac activity.Changes in cardiac output in fish are normally associated withlarge changes in stroke volume and small cha-nges in heart rate.  相似文献   

11.
The vertebrate head is a complex assemblage of cranial specializations, including the central and peripheral nervous systems, viscero- and neurocranium, musculature and connective tissue. The primary differences that exist between vertebrates and other chordates relate to their craniofacial organization. Therefore, evolution of the head is considered fundamental to the origins of vertebrates (Gans and Northcutt, 1983). The transition from invertebrate to vertebrate chordates was a multistep process, involving the formation and patterning of many new cell types and tissues. The evolution of early vertebrates, such as jawless fish, was accompanied by the emergence of a specialized set of cells, called neural crest cells which have long held a fascination for developmental and evolutionary biologists due to their considerable influence on the complex development of the vertebrate head. Although it has been classically thought that protochordates lacked neural crest counterparts, the recent identification and characterization of amphioxus and ascidian genes homologous to those involved in vertebrate neural crest development challenges this idea. Instead it suggests thatthe neural crest may not be a novel vertebrate cell population, but could have in fact originated from the protochordate dorsal midline epidermis. Consequently, the evolution of the neural crest cells could be reconsidered in terms of the acquisition of new cell properties such as delamination-migration and also multipotency which were key innovations that contributed to craniofacial development. In this review we discuss recent findings concerning the inductive origins of neural crest cells, as well as new insights into the mechanisms patterning this cell population and the subsequent influence this has had on craniofacial evolution.  相似文献   

12.
 The molecular signalling mechanisms that are believed to govern the patterning of the heart early in embryonic development are not well understood. We have investigated the events which occur during patterning of the vertebrate heart by exposing gastrula stage zebrafish embryos to lithium, which is known to affect the phosphoinositol signalling pathway. Treatment of embryos at 50% epiboly (5.25 h after fertilization at 28.5°C) with 0.3 m LiCl for 5–15 min, results in embryos with defects which range from mild to severe, depending on the length of time the embryos are exposed to lithium. In the heart, defects appear progressively in the inflow tract, the sinus venosus and atrium. By using an antibody that recognizes an atrium-specific isoform of myosin, our results show that lithium treatment at gastrulation specifically affects the atrium and sinus venosus, and has little obvious effect on the ventricle. Defects induced by lithium differ from those induced by retinoic acid (RA) treatment of similarly staged embryos, and suggest that lithium and RA may affect the patterning signals important for establishment of the vertebrate heart by acting on different populations of cells or by influencing different patterning pathways. Received: 8 December 1995 / Accepted: 11 April 1996  相似文献   

13.
The embryonic vertebrate heart is divided into two major chambers, an anterior ventricle and a posterior atrium. Although the fundamental differences between ventricular and atrial tissues are well documented, it is not known when and how cardiac anterior-posterior (A-P) patterning occurs. The expression patterns of two zebrafish cardiac myosin genes, cardiac myosin light chain 2 (cmlc2) and ventricular myosin heavy chain (vmhc), allow us to distinguish two populations of myocardial precursors at an early stage, well before the heart tube forms. These myocardial subpopulations, which may represent the ventricular and atrial precursors, are organized in a medial-lateral pattern within the precardiac mesoderm. Our examinations of cmlc2 and vmhc expression throughout the process of heart tube assembly indicate the important role of an intermediate structure, the cardiac cone, in the conversion of this early medial-lateral pattern into the A-P pattern of the heart tube. To gain insight into the genetic regulation of heart tube assembly and patterning, we examine cmlc2 and vmhc expression in several zebrafish mutants. Analyses of mutations that cause cardia bifida demonstrate that the achievement of a proper cardiac A-P pattern does not depend upon cardiac fusion. On the other hand, cardiac fusion does not ensure the proper A-P orientation of the ventricle and atrium, as demonstrated by the heart and soul mutation, which blocks cardiac cone morphogenesis. Finally, the pandora mutation interferes with the establishment of the early medial-lateral myocardial pattern. Altogether, these data suggest new models for the mechanisms that regulate the formation of a patterned heart tube and provide an important framework for future analyses of zebrafish mutants with defects in this process.  相似文献   

14.
Endogenous patterns of retinoic acid (RA) signaling in avian cardiac morphogenesis were characterized by localized expression of a key RA-synthetic enzyme, RALDH2, which displayed a biphasic pattern during heart development. RALDH2 immunoreactivity was initially apparent posterior to Hensen's node of stage 5-6 embryos and subsequently in somites and unsegmented paraxial and lateral plate mesoderm overlapping atrial precursors in the cardiogenic plate of stage 9- embryos. Initial RALDH2 synthesis in the posterior myocardium coincided with activation of the AMHC1 gene, a RA-responsive marker of inflow heart segments. A wave of RALDH2 synthesis then swept the myocardium in a posterior-to-anterior direction, reaching the outflow tract by stage 13, then fading from the myocardial layer. The second phase of RALDH2 expression, initiated at stage 18 in the proepicardial organ, persisted in migratory epicardial cells that completely enveloped the heart by stage 24. Early restriction of RALDH2 expression to the posterior cardiogenic plate, overlapping RA-inducible gene activation, provides evidence for commitment of posterior avian heart segments by localized production of RA, whereas subsequent RALDH2 expression exclusively in the migratory epicardium suggests a role for the morphogen in ventricular expansion and morphogenesis of underlying myocardial tissues.  相似文献   

15.
心肌细胞发育过程中胞浆内钙稳态的调控   总被引:1,自引:1,他引:0  
Fu JD  Yang HT 《生理学报》2006,58(2):95-103
Ca^2+信号是细胞和各器官生长发育、行使其生理功能的基础,维持心肌细胞的钙稳态是保持正常心脏功能的先决条件。作为在胚胎发育过程中最早出现并行使功能的器官,胚胎期心脏的形态结构发生了明显的变化,泵血功能不断增强,以适应不断增强的机体的生理需求。从胚胎到成年,心肌细胞的功能有非常大的改变,各钙离子通道的表达也发生明显变化。因此,发育早期心肌细胞的钙稳态调控与成熟心肌细胞有明显的不同,在发育过程中引起细胞收缩的Ca^2+来源也有明显的变化。随着分子和细胞生物学研究的发展,以及胚胎干细胞体外分化模型的应用,人们对心肌细胞发育过程中钙稳态的调控有了进一步的认识。本文综述了早期心肌细胞发育过程中胞浆内钙稳态的变化,总结了早期心肌细胞钙稳态调控机制的最新研究进展。  相似文献   

16.
The patterning of an internal organ, like the heart, is little understood. Central to this patterning is the formation, or the acquisition, of an anteroposterior (A-P) axis. We have approached the question of how the heart tube acquires polarity in the zebrafish, Brachydanio rerio, which offers numerous advantages for studying cardiac morphogenesis. During the early stages of organogenesis in the fish, the heart tube lies in an A-P orientation with the venous end lying anteriorly and the arterial end lying posteriorly. High doses (10(-6)-10(-5)M) of retinoic acid (RA) cause truncation of the body axis, as they do in Xenopus. Low doses of retinoic acid (10(-8)-10(-7) M), which do not appear to affect the rest of the embryo, have pronounced effects upon heart tube morphogenesis, causing it to shrink progressively along the A-P axis. To investigate this further, we identified monoclonal antibodies that distinguish between the zebrafish cardiac chambers and used them to show that the RA-induced cardiac truncation always begins at the arterial end of the heart tube. There is a continuous gradient of sensitivity from the arterial to the venous end, such that increasing RA exposure causes the progressive and sequential deletion first of the bulbus arteriosus and then, in order, of the ventricle, the atrium, and the sinus venosus. As exposure increases, parts of chambers are deleted before entire chambers; thus, the sensitivity to RA appears to be independent of chamber boundaries. The analysis of the heart tube's sensitivity to RA and its timing suggest that polarity is established during or shortly after initial commitment to the cardiac lineage.  相似文献   

17.
18.
Organization of cardiac chamber progenitors in the zebrafish blastula   总被引:5,自引:0,他引:5  
Organogenesis requires the specification of a variety of cell types and the organization of these cells into a particular three-dimensional configuration. The embryonic vertebrate heart is organized into two major chambers, the ventricle and atrium, each consisting of two tissue layers, the myocardium and endocardium. The cellular and molecular mechanisms responsible for the separation of ventricular and atrial lineages are not well understood. To test models of cardiac chamber specification, we generated a high-resolution fate map of cardiac chamber progenitors in the zebrafish embryo at 40% epiboly, a stage prior to the initiation of gastrulation. Our map reveals a distinct spatial organization of myocardial progenitors: ventricular myocardial progenitors are positioned closer to the margin and to the dorsal midline than are atrial myocardial progenitors. By contrast, ventricular and atrial endocardial progenitors are not spatially organized at this stage. The relative orientations of ventricular and atrial myocardial progenitors before and after gastrulation suggest orderly movements of these populations. Furthermore, the initial positions of myocardial progenitors at 40% epiboly indicate that signals residing at the embryonic margin could influence chamber fate assignment. Indeed, via fate mapping, we demonstrate that Nodal signaling promotes ventricular fate specification near the margin, thereby playing an important early role during myocardial patterning.  相似文献   

19.
Establishment of anteroposterior (AP) polarity is one of the earliest decisions in cardiogenesis and plays an important role in the coupling between heart and blood vessels. Recent research implicated retinoic acid (RA) in the communication of AP polarity to the heart. We utilized embryo culture, in situ hybridization, morphometry, fate mapping and treatment with the RA pan-antagonist BMS493 to investigate the relationship between cardiac precursors and RA signalling. We describe two phases of AP signalling by RA, reflected in RALDH2 expression. The first phase (HH4-7) is characterized by increasing proximity between sino-atrial precursors and the lateral mesoderm expressing RALDH2. In this phase, RA signalling is consistent with diffusion of the morphogen from a large field rather than a single hot spot. The second phase (HH7-8) is characterized by progressive encircling of cardiac precursors by a field of RALDH2 originating from a dynamic and evolutionary-conserved caudorostral wave pattern in the lateral mesoderm. At this phase, cardiac AP patterning by RA is consistent with localized action of RA by regulated activation of the Raldh2 gene within an embryonic domain. Systemic treatment with BMS493 altered the cardiac fate map such that ventricular precursors were found in areas normally devoid of them. Topical application of BMS493 inhibited atrial differentiation in left anterior lateral mesoderm. Identification of the caudorostral wave of RALDH2 as the endogenous source of RA establishing cardiac AP fates provides a useful model to approach the mechanisms whereby the vertebrate embryo confers axial information on its organs.  相似文献   

20.
The Sonic hedgehog (Shh)-null mouse was initially described as a phenotypic mimic of Tetralogy of Fallot with pulmonary atresia (Washington Smoak, I., Byrd, N.A., Abu-Issa, R., Goddeeris, M.M., Anderson, R., Morris, J., Yamamura, K., Klingensmith, J., and Meyers, E.N. 2005. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev. Biol. 283, 357–372.); however, subsequent reports describe only a single outflow tract, leaving the phenotype and its developmental mechanism unclear. We hypothesized that the phenotype that occurs in response to Shh knockdown is pulmonary atresia and is directly related to the abnormal development of the secondary heart field. We found that Shh was expressed by the pharyngeal endoderm adjacent to the secondary heart field and that its receptor Ptc2 was expressed in a gradient in the secondary heart field, with the most robust expression in the caudal secondary heart field, closest to the Shh expression. In vitro culture of secondary heart field with the hedgehog inhibitor cyclopamine significantly reduced proliferation. In ovo, cyclopamine treatment before the secondary heart field adds to the outflow tract reduced proliferation only in the caudal secondary heart field, which coincided with the region of high Ptc2 expression. After outflow tract septation should occur, embryos treated with cyclopamine exhibited pulmonary atresia, pulmonary stenosis, and persistent truncus arteriosus. In hearts with pulmonary atresia, cardiac neural crest-derived cells, which form the outflow tract septum, migrated into the outflow tract and formed a septum. However, this septum divided the outflow tract into two unequal sized vessels and effectively closed off the pulmonary outlet. These experiments show that Shh is necessary for secondary heart field proliferation, which is required for normal pulmonary trunk formation, and that embryos with pulmonary atresia have an outflow tract septum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号