首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The Group IV phospholipase A2 family is comprised of six intracellular enzymes commonly called cytosolic phospholipase A2 (cPLA2) , cPLA2β, cPLA2γ, cPLA2δ, cPLA2ε and cPLA2ζ. They are most homologous to phospholipase A and phospholipase B/lysophospholipases of filamentous fungi particularly in regions containing conserved residues involved in catalysis. However, a number of other serine acylhydrolases (patatin, Group VI PLA2s, Pseudomonas aeruginosa ExoU and NTE) contain the Ser/Asp catalytic dyad characteristic of Group IV PLA2s, and recent structural analysis of patatin has confirmed its structural similarity to cPLA2. A characteristic of all these serine acylhydrolases is their ability to carry out multiple reactions to varying degrees (PLA2, PLA1, lysophospholipase and transacylase activities). cPLA2, the most extensively studied Group IV PLA2, is widely expressed in mammalian cells and mediates the production of functionally diverse lipid products in response to extracellular stimuli. It has PLA2 and lysophospholipase activities and is the only PLA2 that has specificity for phospholipid substrates containing arachidonic acid. Because of its role in initiating agonist-induced release of arachidonic acid for the production of eicosanoids, cPLA2 activation is important in regulating normal and pathological processes in a variety of tissues. Current information available about the biochemical properties and tissue distribution of other Group IV PLA2s suggests they may have distinct mechanisms of regulation and functional roles.  相似文献   

2.
3.
4.
The GTPase effector domain (GED) of dynamin forms large soluble oligomers in vitro, while its mutant – I697A – lacks this property at low concentrations. With a view to understand the intrinsic structural characteristics of the polypeptide chain, the global unfolding characteristics of GED wild type (WT) and I697A were compared using biophysical techniques. Quantitative analysis of the CD and fluorescence denaturation profiles revealed that unfolding occurred by a two-state process and the mutant was less stable than the WT. Even in the denatured state, the mutation caused chemical shift perturbations and significant differences were observed in the 15N transverse relaxation rates (R2), not only at the mutation site but all around. These results demonstrate that the hydrophobic change associated with the mutation perturbs the structural and motional preferences locally, which are then relayed via different folding pathways along the chain and the property of oligomerization in the native state is affected.  相似文献   

5.
Binding of the polyunsaturated cis-parinaric acid to bovine β-lactoglobulin (BLG) was studied by circular dichroism (CD), electronic absorption spectroscopy and mass spectrometry methods. Upon protein binding, the UV absorption band of parinaric acid is red shifted by ca. 5 nm, showing hypochromism and reduced vibrational fine structure, suggesting that the ligand binds as a monomer in non-planar geometry. In the CD spectra measured at pH 7.36 and 8.5 a strong, negative Cotton band appears centered at 310 nm (Δε=−25 M−1 cm−1) corresponding to the long-wavelength absorption band of cis-parinaric acid. The source of this induced optical activity is the helical distortion of the polyene chromophore caused by the chiral protein environment. From CD spectral data the value of the association constant was calculated to be 4.7×105 M−1 at pH 7.36. CD and mass spectrometry measurements showed that parinaric acid binds weakly to BLG in acidic solution, though small peaks at mass 18559 and 18645 can be obtained in the reconstructed electrospray mass spectrum; these correspond to the binding of parinaric acid in 1:1 stoichiometry to both monomer variants of BLG B and A. The hydrophobic interior cavity of BLG was assigned as the primary binding site of cis-parinaric acid.  相似文献   

6.
X-linked inhibitor of apoptosis protein (XIAP)-associated factor 1 (XAF1) has been implicated as a novel tumor suppressor, which was proposed to exert pro-apoptotic effect by antagonizing the anticaspase activity of XIAP. Here, we delineated the domain architecture of XAF1 by applying limited proteolysis and peptide mass fingerprinting analysis. Our results indicated that XAF1 has a distinct domain organization, with a highly compact N-terminal domain (XAF1(NTD) ) followed by a middle domain (XAF1(MD) ), a 42-residue unstructured linker and a C-terminal domain (XAF1(CTD) ). The search of XIAP binding region within XAF1 revealed that a modest affinity XIAP(RING) binding site (dissociation constant, K(d) , ~18 μM) is located at the C-terminal portion of XAF1. This C-terminal region, embracing XAF1(CTD) and a flexible tail at C-terminus (residue Thr251-Ser301), is functionally identified as XIAP(RING) -binding domain of XAF1 (XAF1(RBD) ) in the present study. We have also mapped the interaction sites for XAF1(RBD) on XIAP(RING) by using NMR spectroscopy. By applying in vitro ubiquitination assay, we observed that XAF1(RBD) /XIAP interaction is essential for the ubiquitination of GST-XAF1(RBD) fusion protein. In addition, the C-terminal XAF1 fragment harboring XAF1(RBD) was found to be substantially ubiquitinated by XIAP(RING) . Base on these observations, we speculate a possible role of XAF1(RBD) in targeting XAF1 for XIAP-mediated ubiquitination.  相似文献   

7.
The objective of this work is to identify proteins of the human and porcine parasite, Taenia solium, which may be exploited for control of the parasite. Through screening a cDNA library of T. solium metacestodes, we have identified a novel Sec-14-like Taenia lipid-binding protein that may play an important role in membrane trafficking. The Sec14-like sequence is a single copy gene, encoding a putative polypeptide of 320 amino acids and 36.1 kDa (sec14Tsol protein). Secondary amino acid structural analysis suggested that the sec14Tsol protein might contain two distinct structural domains, an amino-terminal alpha-helix rich domain and a mixed alpha-helix/beta-stand carboxy-terminal zone, showing homology with the conserved SEC14 domain found in a great number of proteins that bind lipids, as the regulators of membrane trafficking between Golgi membrane bilayers. Significantly, therefore, in a phosphoinositide-binding assay, sec14Tsol purified recombinant protein specifically interacted with important lipid regulators of membrane trafficking, with a preference for PI(3)P(2), PI(3,4)P(2), PI(4,5)P(2) and phosphatidic acid. Moreover, the sec14Tsol protein was localized in the Golgi apparatus of transfected cells and in the spiral canal region of T. solium metacestode tegument. As sec14Tsol protein may play an important role in membrane trafficking, its demonstrated localisation in the intact parasite tegument suggests its involvement in the function of the tegument and thus perhaps interaction with the host.  相似文献   

8.
Mammalian SWI/SNF complexes are evolutionary conserved, ATP-dependent chromatin remodeling units. BAF155 in the SWI/SNF complex contains several highly conserved domains, including SANT, SWIRM, and leucine zipper domains. The biological roles of the SWIRM domain remain unclear; however, both structural and biochemical analyses of this domain have suggested that it could mediate protein-protein or protein-DNA interactions during the chromatin remodeling process. The human BAF155 SWIRM domain was cloned into the Escherichia coli expression vector pMAL-c2X and purified using affinity chromatography for structural analysis. We report the backbone 1H, 15N, and 13C resonance assignments and secondary structure of this domain using nuclear magnetic resonance (NMR) spectroscopy and the TALOS+ program. The secondary structure consists of five α-helices that form a typical histone fold for DNA interactions. Our data suggest that the BAF155 SWIRM domain interacts with nucleosome DNA (K d = 0.47 μM).  相似文献   

9.
The NOD-like receptor NLRP1 (NLR family, pyrin domain containing 1) senses the presence of the bacterial cell wall component l-muramyl dipeptide (MDP) inside the cell. We determined the crystal structure of the LRR domain of human NLRP1 in the absence of MDP to a resolution of 1.65 Å. The fold of the structure can be assigned to the ribonuclease inhibitor-like class of LRR proteins. We compared our structure with X-ray models of the LRR domains of NLRX1 and NLRC4 and a homology model of the LRR domain of NOD2. We conclude that the MDP binding site of NLRP1 is not located in the LRR domain.  相似文献   

10.
The cation-permeable channel PKD2L1 forms a homomeric assembly as well as heteromeric associations with both PKD1 and PKD1L3, with the cytoplasmic regulatory domain (CRD) of PKD2L1 often playing a role in assembly and/or function. Our previous work indicated that the isolated PKD2L1 CRD assembles as a trimer in a manner dependent on the presence of a proposed oligomerization domain. Herein we describe the 2.7 Å crystal structure of a segment containing the PKD2L1 oligomerization domain which indicates that trimerization is driven by the β-branched residues at the first and fourth positions of a heptad repeat (commonly referred to as “a” and “d”) and by a conserved R-h-x-x-h-E salt bridge motif that is largely unique to parallel trimeric coiled coils. Further analysis of the PKD2L1 CRD indicates that trimeric association is sufficiently strong that no other species are present in solution in an analytical ultracentrifugation experiment at the lowest measurable concentration of 750 nM. Conversely, mutation of the “a” and “d” residues leads to formation of an exclusively monomeric species, independent of concentration. Although both monomeric and WT CRDs are stable in solution and bind calcium with 0.9 μM affinity, circular dichroism studies reveal that the monomer loses 25% more α-helical content than WT when stripped of this ligand, suggesting that the CRD structure is stabilized by trimerization in the ligand-free state. This stability could play a role in the function of the full-length complex, indicating that trimerization may be important for both homo- and possibly heteromeric assemblies of PKD2L1.  相似文献   

11.
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354–363 and 371–379 separated by a more flexible segment of residues 364–370. In LPPG micelles a helical conformation was observed for residues 354–377 with greater flexibility in the 366–367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion.  相似文献   

12.
Le Lan C  Neumann JM  Jamin N 《FEBS letters》2006,580(22):5301-5305
Circular dichroism (CD) and NMR spectroscopy were used to study the conformational properties of two synthetic peptides, D82-R101 and D82-I109, encompassing the caveolin scaffolding domain (D82-R101), in the presence of dodecylphosphocholine (DPC) micelles. Our data show that a stable helical conformation of the caveolin scaffolding domain in a membrane mimicking system is only obtained for the peptide including the L102-I109 hydrophobic stretch, a part of the caveolin intra-membrane domain. Through chemical shift variations, an ensemble of six residues of the D82-L109 peptide, mainly located in the V(94)TKYWFYR(101) motif were found to detect the presence of phosphatidylserine solubilized in DPC micelles. Our results constitute a first step for elucidating at a residue level the conformational properties of the central region of the caveolin-1 protein.  相似文献   

13.
Lipopeptides derived from protein kinase C (PKC) pseudosubstrates have the ability to cross the plasma membrane in cells and modulate the activity of PKC in the cytoplasm. Myristoylation or palmitoylation appears to promote translocation across membranes, as the non-acylated peptides are membrane impermeant. We have investigated, by fluorescence spectroscopy, how myristoylation modulates the interaction of the PKC pseudosubstrate peptide KSIYRRGARRWRKL with lipid vesicles and translocation across the lipid bilayer. Our results indicate that myristoylated peptides are intimately associated with lipid vesicles and are not peripherally bound. When visualized under a microscope, myristoylation does appear to facilitate translocation across the lipid bilayer in multilamellar lipid vesicles. Translocation does not involve large-scale destabilization of the bilayer structure. Myristoylation promotes translocation into the hydrophobic interior of the lipid bilayer even when the non-acylated peptide has only weak affinity for membranes and is also only peripherally associated with lipid vesicles.  相似文献   

14.
Although essentially conserved, the N-terminal nucleotide-binding domain (NBD) of Cdr1p and other fungal transporters has some unique substitutions of amino acids which appear to have functional significance for the drug transporters. We have previously shown that the typical Cys193 in Walker A as well as Trp326 and Asp327 in the Walker B of N-terminal NBD (NBD-512) of Cdr1p has acquired unique roles in ATP binding and hydrolysis. In the present study, we show that due to spatial proximity, fluorescence resonance energy transfer (FRET) takes place between Trp326 of Walker B and MIANS [2-(4-maleimidoanilino) naphthalene-6-sulfonic acid] on Cys193 of Walker A motif. By exploiting FRET, we demonstrate how these critical amino acids are positioned within the nucleotide-binding pocket of NBD-512 to bind and hydrolyze ATP. Our results show that both Mg2+ coordination and nucleotide binding contribute to the formation of the active site. The entry of Mg2+ into the active site causes the first large conformational change that brings Trp326 and Cys193 in close proximity to each other. We also show that besides Trp326, typical Glu238 in the Q-loop also participates in coordination of Mg2+ by NBD-512. A second conformational change is induced when ATP, but not ADP, docks into the pocket. Asn328 does sensing of the γ-phosphate of the substrate in the extended Walker B motif, which is essential for the second conformational change that must necessarily precede ATP hydrolysis. Taken together our results imply that the uniquely placed residues in NBD-512 have acquired critical roles in ATP catalysis, which drives drug extrusion.  相似文献   

15.
A specific protein kinase that phosphorylates Ser60, Ser59, or Ser58 of 14-3-3beta, eta, or zeta, respectively, only in the presence of sphingosine (Sph) or N,N-dimethyl-Sph (DMS), was termed "sphingosine-dependent protein kinase-1" (SDK1) [J. Biol. Chem. 273(34) (1998) 21834]. We have now identified SDK1 as a protein having the same amino acid sequence as in the C-terminal-half kinase domain of PKCdelta, with approximately 40 kDa molecular mass, based on large-scale purification of a protein from rat liver, and partial sequence using three different combinations of LC-MS or LC-MS/MS with respective search engine. PKCdelta did not display any SDK1 activity and PKCdelta activity was inhibited by Sph and DMS. However, strong SDK1 activity, only in the presence of Sph or DMS, became detectable when PKCdelta was incubated with caspase-3, which releases the approximately 40 kDa kinase domain.  相似文献   

16.
Oxidative stress leads to drastic modifications of both the biophysical properties of biomembranes and their associated chemistry imparted upon the formation of oxidatively modified lipids. To this end, oxidized phospholipid derivatives bearing an aldehyde function, such as 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) can covalently react with proteins that come into direct contact. Intriguingly, we observed PoxnoPC in a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) matrix to shorten and abolish the lag time in the action of phospholipase A2 (PLA2) on this composite substrate, with concomitant augmented decrement in pH, indicating more extensive hydrolysis, which was in keeping with enhanced 90° light scattering. The latter was abolished by the aldehyde scavenger methoxyamine, thus suggesting the involvement of Schiff base. Enhanced hydrolysis of a fluorescent phospholipid analogue was seen for PLA2 preincubated with PoxnoPC. Mixing PLA2 with submicellar (22 µM) PoxnoPC caused a pronounced increase in Thioflavin T fluorescence, in keeping with the formation of amyloid-type fibers, which were seen also by electron microscopy.  相似文献   

17.
MRP1 couples ATP binding/hydrolysis to solute transport. We have shown that ATP binding to nucleotide-binding-domain 1 (NBD1) plays a regulatory role whereas ATP hydrolysis at NBD2 plays a crucial role in ATP-dependent solute transport. However, how ATP is hydrolyzed at NBD2 is not well elucidated. To partially address this question, we have mutated the histidine residue in H-loop of MRP1 to either a residue that prevents the formation of hydrogen-bonds with ATP and other residues in MRP1 or a residue that may potentially form these hydrogen-bonds. Interestingly, substitution of H827 in NBD1 with residues that prevented formation of these hydrogen-bonds had no effect on the ATP-dependent solute transport whereas corresponding mutations in NBD2 almost abolished the ATP-dependent solute transport completely. In contrast, substitutions of H1486 in H-loop of NBD2 with residues that might potentially form these hydrogen-bonds exerted either full function or partial function, implying that hydrogen-bond formation between the residue at 1486 and the γ-phosphate of the bound ATP and/or other residues, such as putative catalytic base E1455, together with S769, G771, T1329 and K1333, etc., holds all the components necessary for ATP binding/hydrolysis firmly so that the activated water molecule can efficiently hydrolyze the bound ATP at NBD2.  相似文献   

18.

Background

The Nrf2–Keap1 interaction is the major regulatory pathway for cytoprotective responses against oxidative and electrophilic stresses. Keap1, a substrate protein of a Cul3-dependent E3 ubiquitin ligase complex, is a negative regulator of Nrf2. The use of chemicals to regulate the interaction between Keap1 and Nrf2 has been proposed as a strategy for the chemoprevention of degenerative diseases and cancers.

Results

The interactions between Keap1 and Nrf2 in vitro and in vivo were investigated using fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) strategies in our study. Nrf2 with its N-terminal fused to eGFP and Keap1 with its C-terminal fused to mCherry were expressed and purified in vitro. When purified eGFP-Nrf2 and Keap1-mChrry proteins were mixed together, a strong FRET signal could be detected, indicating an efficient energy transfer from eGFP to mCherry. Moreover, the FRET was detected in vivo using confocal microscopy in colon cancer HCT-116 cells that were co-transfected with eGFP-Nrf2 and Keap1-mCherry. Finally, using an eGFP BiFC approach, the Keap1-Nrf2 interaction was also detected in MCF7 cells by transfecting eGFP N-terminal fused to Nrf2 (eN158-Nrf2) and eGFP C-terminal fused to Keap1 (eC159-Keap1). Using the BiFC and FRET systems, we demonstrated that the prototypical Nrf2-activiting compound tBHQ and the antitumor drug F-dUrd might interfere with the intracellular interaction between Keap1 and Nrf2 whereas the 5-Fu have little role in activating the protective response of Nrf2 pathway in cancer cells.

Conclusions

By analyzing the perturbation of the energy transfer between the donor and acceptor fluorophores and the bimolecular fluorescence complementation of eGFP, we can screen potential inhibitors for the interaction between Keap1 and Nrf2.  相似文献   

19.
Plasma membranes are complex entities common to all living cells. The basic principle of their organization appears very simple, but they are actually of high complexity and represent very dynamic structures. The interactions between bioactive molecules and lipids are important for numerous processes, from drug bioavailability to viral fusion. The cell membrane is a carefully balanced environment and any change inflicted upon its structure by a bioactive molecule must be considered in conjunction with the overall effect that this may have on the function and integrity of the membrane. Conceptually, understanding the molecular mechanisms by which bioactive molecules interact with cell membranes is of fundamental importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号