首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Two morphogenetic factors have been isolated from tissue of colonial hydroids. Both exert strong effects on pattern formation during metamorphosis, regeneration and colony development. Polyp-inhibiting factor (PIF) is a bivalent inhibitor which strongly affects head and bud formation but acts weakly on stolon branching. Proportion-altering factor (PAF) is a distalizing factor. It counteracts the formation of stolon and promotes the formation of head structures during metamorphosis and regeneration. PIF and PAF antagonistically influence the spatial arrangement of polyps within a colony. They are capable of dislocating structures and thus appear to interfere with or are even part of the pattern-controlling mechanism. Both factors are of low molecular size (about 500 daltons), hydrophilic and probably not peptides.  相似文献   

2.
Summary During embryogenesis and planula development of the colonial hydroidHydractinia echinata cell proliferation decreases in a distinct spatio-temporal pattern. Arrest in S-phase activity appears first in cells localized at the posterior and then subsequently at the anterior pole of the elongating embryo. These areas do not resume S-phase activity, even during the metamorphosis of the planula larva into the primary polyp. Tissue containing the quiescent cells gives rise to the terminal structures of the polyp. The posterior area of the larva becomes the hypostome and tentacles, while the anterior part of the larva develops into the basal plate and stolon tips. In mature planulae only a very few cells continue to proliferate. These cells are found in the middle part of the larva. Labelling experiments indicate that the prospective material of the postmetamorphic tentacles and stolon tips originates from cells which have exited from the cell cycle in embryogenesis or early in planula development. Precursor cells of the nematocytes which appear in the tentacles of the polyp following metamorphosis appear to have ceased cycling before the 38th hour of embryonic development. The vast majority of the cells that constitute the stolon tips of the primary polyp leave the cell cycle not later than 58 h after the beginning of development. We also report the identification of a cell type which differentiates in the polyp without passing through a post-metamorphic S-phase. The cell type appears to be neural in origin, based upon the identification of a neuropeptide of the FMRFamide type.  相似文献   

3.
A wealth of information has suggested the involvement of protein kinase C (PKC) in metamorphosis of Hydractinia echinata and in pattern formation of Hydra magnipapillata. We have identified a Ca2+- and phospholipid-dependent kinase activity in extracts of both species. The enzyme was characterized as being similar to mammalian PKC by ion exchange chromatography. Gel filtration experiments revealed a molecular weight of about 70 kD. In phosphorylation assays of endogenous Hydractinia proteins, a protein with a molecular weight of 22.5 kD was found to be phoshorylated upon addition of phosphatidylserine. Bacterial induction of metamorphosis of Hydractinia echinata caused an increase in endogenous diacylglycerol, the physiological activator of PKC, suggesting that the bacterial inducer acts by activating receptor-regulated phospholipid metabolism. Exogenous diacylglycerol leads to membrane translocation of PKC, indicative of an activation. On the basis of our results and those of Freeman and Ridgway (1990) a model for the biochemical events during metamorphosis is presented.  相似文献   

4.
Summary A metamorphosis-inducing factor was isolated from medium conditioned by either metamorphosing larvae or 3-day postmetamorphic primary polyps. The factor has a molecular weight 8 kDa and is heatlabile. It does not induce metamorphosis of isolated posterior fragments and is therefore not identical to the internal signal described by Schwoerer-Böhning et al. (1990). The biological significance of the substance is currently unclear, therefore its inducing activity may be a side effect.  相似文献   

5.
Metamorphosin A is a neuropeptide   总被引:3,自引:0,他引:3  
A novel biologically active peptide (metamorphosin A, MMA, pEQPGLW.NH2) has recently been described. It was isolated from Anthopleura elegantissima and triggers metamorphosis in Hydractinia echinata. Antibodies directed against the C-terminal part of the molecule immunohistochemically stain neurosensory cells and processes in the anterior part of larvae of H. echinata. We assume that in metamorphosis MMA (or a closely related LW-amide) is an internal signal transmitted from the anterior to the posterior body parts. Immunoreactivity is also found in ectodermal nerve processes — but not cell bodies — in the tentacles and in the basal disk of the foot of Hydra magnipapillata. This is, to our knowledge, the first report of LW-amide(s) as (a) neuropeptide(s).  相似文献   

6.
Summary Patterning processes during embryonic development of Hydractinia echinata were analysed for alterations in morphology and physiology as well as for changes at the cellular level by means of treatment with proportioning altering factor (PAF). PAF is an endogenous factor known to change body proportions and to stimulate nerve cell differentiation in hydroids (Plickert 1987, 1989). Applied during early embryogenesis, this factor interferes with the proper establishment of polarity in the embryo. Instead of normal shaped planulae with one single anterior and one single posterior end, larvae with multiple termini develop. Preferentially, supernumerary posterior ends, which give rise to polyp head structures during metamorphosis, form while anterior ends are reduced. The formation of such polycaudal larvae coincide with an increase in the number of interstitial cells and their derivatives at the expense of epithelial cells. Treatment of further advanced embryonic stages causes an increase in length, presumably due to the general stimulation of cell proliferation observed in such embryos. Also, the spatial arrangement of cells (i.e. cells in proliferation and RFamide (Arg-Phe-amide immunopositive nerve cells) is altered by PAF. Larvae that develop from treated embryos display altered physiological properties and are remarkably different from normal planulae with respect to their morphogenetic potential: (1) Larvae lose their capacity to regenerate missing anterior parts; isolated posterior larva fragments form regenerates of a bicaudal phenotype. (2) In accordance with the frequently observed reduction of anterior structures, the capacity to respond to metamorphosis-inducing stimuli decreases. (3) The morphogenetic potential to form basal polyp parts is found to be reduced. In contrast, the potential to form head structures during metamorphosis increases, since primary polyps with supernumerary hypostomes and tentacles metamorphose from treated animals.  相似文献   

7.
Summary We have compared the chemical properties and biological activities of the mesoderm-inducing factor that is secreted by the Xenopus XTC cell line with the vegetalizing factor from chicken embryos. The inducing activity of the factors was tested in different concentrations on totipotent ectoderm either by implantation into early gastrulae of Triturm alpestris or by application of solutions to isolated ectoderm of early gastrulae of Xenopus laevis. Both factors have similar properties. They are not irreversibly inactivated after treatment with 6 M urea or with phenol at 60° C. Reduction with thioglycolic acid inactivates the factors completely. The inducing activity of XTC-conditioned medium decreases only slightly after treatment with 50% formic acid. The apparent molecular mass and the isoelectric point of the factors are similar. The XTC factor was partially purified by size-exclusion and reversed-phase high-pressure liquid chromatography and by isoelectric focusing. The possible relationship of these factors to transforming growth factor is discussed.Dedicated to Prof. Dr. Sulo Toivonen on the occasion of his 80th birthday  相似文献   

8.
Summary Recently the mesoderm-inducing effects of the transforming growth factor (TGF-) family of proteins have been widely examined. In an attemt to elucidate the functions of these proteins, porcine inhibin A and activin A (erythroid differentiation factor; EDF) were examined. Treatment of explants with activin A led to differentiation of mesodermal derivatives such as mesenchyme, notochord, blood cells and muscle, but inhibin A had a much lesser effect. The mesodermal differentiation induced by activin A was also comfirmed by analyses using a polyclonal antibody against muscle myosin. By indirect immunofluorescence analysis, the differentiation of muscle blocks was observed in the activin-A-treated explants, whereas no differentiation was observed in inhibin-A-treated and control explants. These findings confirm that this protein of the TGF- family has mesoderm-inducing ability.  相似文献   

9.
Attempts at inducing differentiation in various explants of Albizzia lebbeck resulted in the production of abundant shoot buds from the hypocotyl, root, cotyledon and leaflet explants, both directly and indirectly (i.e. without and with the intervention of callus formation). Rooting was achieved on transfer of the shoots to BM +2 mg/1 IAA after some growth. The plants could be successfully transferred to soil, providing a method for mass propagation of this important leguminous tree species.  相似文献   

10.
Summary The number of insect midgut cells is maintained homeostatically in vivo and in vitro. However, during starvation, the midgut shrinks and the rate of cell replacement appears to be suppressed. When they undergo metamorphosis, the internal organs of insects are drastically remodeled by cell proliferation, differentiation, and apoptotic processes, and the net number of cells usually increases. An extract of 1650 midguts ofPeriplaneta americana was fractionated by highperformance liquid chromatography (HPLC) to obtain the peptides that regulate these processes. The HPLC fractions were tested for myotropic activity in the foregut and for effects on cell proliferation or loss in primary cultures of larvalHeliothis virescens midgut cells and in a cell line derived from the last-instar larval fat body ofMamestra brassicae. Some fractions stimulated midgut stem cell proliferation and differentiation, while others caused loss of differentiated columnar and goblet cells. Other fractions stimulated cell proliferation in the larval fat body cells. Mention of products in this article does not imply endorsement by the U.S. Department of Agriculture.  相似文献   

11.
Summary Spermatogenesis inHydra carnea was investigated. The cell proliferation and differentiation kinetics of intermediates in the spermatogenesis pathway were determined, using quantitative determinations of cell abundance, pulse and continuous labelling with3H-thymidine and nuclear DNA measurements. Testes develop in the ectoderm of male hydra as a result of interstitial cell proliferation. Gonial stem cells and proliferating spermatogonia have cell cycles of 28 h and 22 h, respectively. Stem cells undergo four, five or six cell divisions prior to meiosis which includes a premeiotic S+G2 phase of 20 h followed by a long meiotic prophase (22 h).Spermatid differentiation requires 12–29 h. When they first appear, testes contain only proliferating spermatogonia; meiotic and postmeiotic cells appear after 2 and 3 days, respectively and release of mature sperm begins after 4 days. Mature testes produce about 27,000 sperm per day over a period of 4–6 days: about 220 gonial stem cells per testis are required to support this level of sperm differentiation. Further results indicate that somatic (e.g. nematocyte) differentiation does not occur in testes although it continues normally in ectodermal tissue outside testes. Our results support the hypothesis that spermatogenesis is controlled locally in regions of the ectoderm where testes develop.  相似文献   

12.
Summary During development and differentiation of the cellular slime mould Dictyostelium discoideum there appears to be a relationship between the cell cycle and cell fate: amoebae halted in G2 phase during early development differentiate into spores whereas stalk cells are formed from amoebae halted in GI phase. It is proposed that this is because a major effect of the cell cycle is to generate heterogeneity in the cell surface properties of the developing amoebae.  相似文献   

13.
Summary Mucous cells in the basal disk of hydra contain a peroxidase-like enzyme allowing specific staining of these cells with substrates for peroxidases. The peroxidase activity provides an excellent marker for foot mucous cell, differentiation and was used to follow the reappearance of footspecific cells during foot regeneration after amputation. By choosing the appropriate either soluble or precipitable substrate the peroxidase reaction was used both for a qualitative and for a quantitative evaluation of foot-specific differentiation in hydra. For histological studies diaminobenzidien was found to be a suitable substrate which forms a dark brown precipitate within the cells containing the peroxidase activity. For a quantitative evaluation of foot regeneration the soluble substrate 2,2-azino-di(3-ethyl-benzthiazoline-sulfonic acid-6) ammonium salt was used which after reaction with the enzyme gives rise to a diffusible green reaction product the concentration of which can be measured by its specific absorption at 415 nm. Based on the diffusible enzyme product a new quantitative assay for foot regenration was developed and applied to confirm the effect and specificity of morphogenetic substances which either inhibit or activate foot or head regeneration in hydra.  相似文献   

14.
Mechanically isolated mesophyll cells of Zinnia elegans differentiate into tracheary elements (TEs) when cultured in a medium containing adequate auxin and cytokinin. Differentiation in this culture system is relatively synchronous, rapid (occuring within 3 days of cell isolation) and efficient (with up to 65% of the mesophyll cells differentiating into TEs), and does not require prior mitosis. The Zinnia system has been used to investigate (a) cytological and ultrastructural changes occurring during TE differentiation, such as the reorganization of microtubules controlling secondary wall deposition, (b) the influences of calcium and of various plant hormones and antihormones on TE differentiation, and (c) biochemical changes during differentiation, including those occurring during secondary wall deposition, lignification and autolysis. This review summarizes experiments in which the Zinnia system has served as a model for the study of TE differentiation.  相似文献   

15.
16.
Members of the Pax gene family are expressed in various tissues during ontogenesis. Evidence for their crucial role in morphogenesis, organogenesis, cell differentiation and oncogenesis is provided by rodent mutants and human diseases. Additionally, recent experimental in vivo and in vitro approaches have led to the identification of molecules that interact with Pax proteins.  相似文献   

17.
18.
As a first step in determining the identity and relative importance of the evolutionary forces promoting the speciation process in two closely related European taxa of Aquilegia, we investigated the levels of morphological variation in floral and vegetative characters over the narrow region where their ranges enter into contact, and evaluate the relative importance of both types of traits in their differentiation. A total of 12 floral and ten vegetative characters were measured on 375 plants belonging to seven A. vulgaris populations and six A. pyrenaica subsp. cazorlensis populations located in southeastern Spain. Floral and vegetative morphological differentiation occur between taxa and among populations within taxa, but only vegetative characters (particularly plant height and leaf petiolule length) contribute significantly to the discrimination between taxa. Differentiation among populations within taxa is mostly explained by variation in floral traits. Consequently, morphological divergence between the two taxa cannot be interpreted as an extension of among-population differences occurring within taxa. Multivariate vegetative, but not floral, similarity between populations could be predicted from geographical distance. Moreover, the key role of certain vegetative traits in the differentiation of A. vulgaris and A. p. cazorlensis could possibly be attributable to the contrasting habitat requirements and stress tolerance strategies of the two taxa. These preliminary findings seem to disagree with the currently established view of the radiation process in the genus Aquilegia in North America, where the differentiation of floral traits seems to have played a more important role.  相似文献   

19.
Prestalk cell differentiation in Dictyostelium is induced by DIF and two DIF-induced genes, ecmA and ecmB, have revealed the existence of multiple prestalk and stalk cell sub-types. These different sub-types are defined by the pattern of expression of subfragments derived from the ecmA and ecmB promoters. These markers have been utilised in three ways; for fate mapping in vivo, to investigate the molecular mechanisms underlying DIF signalling and to explore the relative requirement for DIF and other signalling molecules for prestalk and stalk cell differentiation in vitro. The heterogeneity of the prestalk and stalk populations seems to be reflected in differences in the cell signalling pathways that they utilise.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号