首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 948 毫秒
1.
Aims: To determine the in‐vitro effect and mode of action of tea saponin on the rumen microbial community and methane production. Methods and Results: Saponin extracted from tea seeds was added to (1) an in‐vitro fermentation inoculated with rumen fluid and (2) a pure culture of Methanobrevibacter ruminantium. Methane production and expression of the methyl coenzyme‐M reductase subunit A (mcrA) were monitored in both cultures. Abundance of methanogens, protozoa, rumen fungi and cellulolytic bacteria were quantified using real‐time PCR, and bacterial diversity was observed using denaturing gradient gel electrophoresis. Addition of tea saponin significantly reduced methane production and mcrA gene expression in the ruminal fermentation but not with the pure culture of M. ruminantium. The abundance of protozoa and fungi were significantly decreased 50% and 79% respectively but methanogen numbers were not affected, and Fibrobacter succinogenes increased by 41%. Bacterial diversity was similar in cultures with or without tea saponin. Conclusions: Tea saponin appeared to reduce methane production by inhibiting protozoa and presumably lowering methanogenic activity of protozoal‐associated methanogens. Significance and Impact of the Study: Tea saponin may be useful as a supplement to indirectly inhibit methane production in ruminants without a deleterious effect on rumen function.  相似文献   

2.
To assess the relative contributions of microbial groups (bacteria, protozoa, and fungi) in rumen fluids to the overall process of plant cell wall digestion in the rumen, representatives of these groups were selected by physical and chemical treatments of whole rumen fluid and used to construct an artificial rumen ecosystem. Physical treatments involved homogenization, centrifugation, filtration, and heat sterilization. Chemical treatments involved the addition of antibiotics and various chemicals to rumen fluid. To evaluate the potential activity and relative contribution to degradation of cell walls by specific microbial groups, the following fractions were prepared: a positive system (whole ruminal fluid), a bacterial (B) system, a protozoal (P) system, a fungal (F) system, and a negative system (cell-free rumen fluid). To assess the interactions between specific microbial fractions, mixed cultures (B+P, B+F, and P+F systems) were also assigned. Patterns of degradation due to the various treatments resulted in three distinct groups of data based on the degradation rate of cell wall material and on cell wall-degrading enzyme activities. The order of degradation was as follows: positive and F systems > B system > negative and P systems. Therefore, fungal activity was responsible for most of the cell wall degradation. Cell wall degradation by the anaerobic bacterial fraction was significantly less than by the fungal fraction, and the protozoal fraction failed to grow under the conditions used. In general, in the mixed culture systems the coculture systems demonstrated a decrease in cellulolysis compared with that of the monoculture systems. When one microbial fraction was associated with another microbial fraction, two types of results were obtained. The protozoal fraction inhibited cellulolysis of cell wall material by both the bacterial and the fungal fractions, while in the coculture between the bacterial fraction and the fungal fraction a synergistic interaction was detected.  相似文献   

3.
To assess the relative contributions of microbial groups (bacteria, protozoa, and fungi) in rumen fluids to the overall process of plant cell wall digestion in the rumen, representatives of these groups were selected by physical and chemical treatments of whole rumen fluid and used to construct an artificial rumen ecosystem. Physical treatments involved homogenization, centrifugation, filtration, and heat sterilization. Chemical treatments involved the addition of antibiotics and various chemicals to rumen fluid. To evaluate the potential activity and relative contribution to degradation of cell walls by specific microbial groups, the following fractions were prepared: a positive system (whole ruminal fluid), a bacterial (B) system, a protozoal (P) system, a fungal (F) system, and a negative system (cell-free rumen fluid). To assess the interactions between specific microbial fractions, mixed cultures (B+P, B+F, and P+F systems) were also assigned. Patterns of degradation due to the various treatments resulted in three distinct groups of data based on the degradation rate of cell wall material and on cell wall-degrading enzyme activities. The order of degradation was as follows: positive and F systems > B system > negative and P systems. Therefore, fungal activity was responsible for most of the cell wall degradation. Cell wall degradation by the anaerobic bacterial fraction was significantly less than by the fungal fraction, and the protozoal fraction failed to grow under the conditions used. In general, in the mixed culture systems the coculture systems demonstrated a decrease in cellulolysis compared with that of the monoculture systems. When one microbial fraction was associated with another microbial fraction, two types of results were obtained. The protozoal fraction inhibited cellulolysis of cell wall material by both the bacterial and the fungal fractions, while in the coculture between the bacterial fraction and the fungal fraction a synergistic interaction was detected.  相似文献   

4.
Aims: Methane emissions from ruminants are a significant contributor to global greenhouse gas production. The aim of this study was to examine the effect of diet on microbial communities in the rumen of steers. Methods and Results: The effects of dietary alteration (50 : 50 vs 90 : 10 concentrate–forage ratio, and inclusion of soya oil) on methanogenic and bacterial communities in the rumen of steers were examined using molecular fingerprinting techniques (T‐RFLP and automated ribosomal intergenic spacer analysis) and real‐time PCR. Bacterial diversity was greatly affected by diet, whereas methanogen diversity was not. However, methanogen abundance was significantly reduced (P = 0·009) in high concentrate–forage diets and in the presence of soya oil (6%). In a parallel study, reduced methane emissions were observed with these diets. Conclusions: The greater effect of dietary alteration on bacterial community in the rumen compared with the methanogen community may reflect the impact of substrate availability on the rumen bacterial community. This resulted in altered rumen volatile fatty acid profiles and had a downstream effect on methanogen abundance, but not diversity. Significance and Impact of the Study: Understanding how rumen microbial communities contribute to methane production and how these microbes are influenced by diet is essential for the rational design of methane mitigation strategies from livestock.  相似文献   

5.
Microbiome analysis of dairy cows fed pasture or total mixed ration diets   总被引:6,自引:0,他引:6  
Understanding rumen microbial ecology is essential for the development of feed systems designed to improve livestock productivity, health and for methane mitigation strategies from cattle. Although rumen microbial communities have been studied previously, few studies have applied next-generation sequencing technologies to that ecosystem. The aim of this study was to characterize changes in microbial community structure arising from feeding dairy cows two widely used diets: pasture and total mixed ration (TMR). Bacterial, archaeal and protozoal communities were characterized by terminal restriction fragment length polymorphism of the amplified SSU rRNA gene and statistical analysis showed that bacterial and archaeal communities were significantly affected by diet, whereas no effect was observed for the protozoal community. Deep amplicon sequencing of the 16S rRNA gene revealed significant differences in the bacterial communities between the diets and between rumen solid and liquid content. At the family level, some important groups of rumen bacteria were clearly associated with specific diets, including the higher abundance of the Fibrobacteraceae in TMR solid samples and members of the propionate-producing Veillonelaceae in pasture samples. This study will be relevant to the study of rumen microbial ecology and livestock feed management.  相似文献   

6.
AIMS: To assess the effect of protozoal species on rumen fermentation characteristics in vitro. METHODS AND RESULTS: Entodinium caudatum, Isotricha intestinalis, Metadinium medium, and Eudiplodinium maggii from monofaunated wethers and mixed protozoa from conventional wethers were obtained by centrifugation, re-suspended at their normal densities in rumen fluid supernatants from defaunated or conventional wethers and incubated in vitro. The presence of protozoa increased the concentration of ammonia and altered the volatile fatty acids balance with more acetate and butyrate produced at the expense of propionate. Differences among species were observed, notably in the production of methane, which increased with E. caudatum as compared to other ciliates and to defaunated and mixed protozoa treatments (P < 0.05). The increased methanogenesis was not correlated to protozoal biomass indicating that the metabolism of this protozoan and/or its influence on the microbial ecosystem was responsible for this effect. CONCLUSIONS: Entodinium caudatum stimulated the production of methane, a negative effect that was reinforced by a concomitant increase in protein degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: Comparison of individual species of protozoa highlighted the particular influence of E. caudatum on rumen fermentation. Its elimination (targeted defaunation) from the rumen could reduce methane production without affecting feed degradation.  相似文献   

7.
The effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents was examined after the refaunation of ciliate-free sheep with an A-type rumen protozoal population. Although the culturable rumen bacterial population was reduced after refaunation the number of fibrolytic micro-organisms detected was higher; the xylanolytic bacterial population and numbers of fungal zoospores were increased after refaunation. The proportion of propionic acid was lower in the refaunated animals, whereas the concentration of ammonia and the acidic metabolites acetate, butyrate and valerate were all increased. The range of enzyme activities present in the digesta subpopulations were the same in defaunated and refaunated animals. The activities of the polysaccharide-degrading enzymes, however, were increased in the microbial populations associated with the digesta solids after refaunation, and at 16 h after feeding the activities were 4–8 times (β-d-xylosidase 20 times) higher than the levels detected in the adherent population from defaunated sheep. The protozoa, either directly through their own enzymes or indirectly as a consequence of their effects on the population size and activity of the other fibrolytic micro-organisms present, have an important role in determining the level of activity of polysaccharide-degrading enzymes in the rumen ecosystem. Although the extent of ryegrass ( Lolium perenne ) hay digestion was similar after 24 h in the absence or presence of protozoa, the initial ruminal degradation was higher in refaunated sheep.  相似文献   

8.
Association of methanogenic bacteria with rumen protozoa   总被引:6,自引:0,他引:6  
Methanogenic bacteria superficially associated with rumen entodiniomorphid protozoa were observed by fluorescence microscopy. A protozoal suspension separated from strained rumen fluid (SRF) by gravity sedimentation exhibited a rate of methane production six times greater (per millilitre) than SRF. The number of protozoa (per millilitre) in the protozoal suspension was three times greater than that of SRF; however, the urease activity of this fraction was half that of SRF. The methanogenic activity of SRF and the discrete fractions obtained by sedimentation of protozoa correlated with the numbers of protozoa per millilitre in each fraction. Gravity-sedimented protozoa, washed four times with cell-free rumen fluid, retained 67-71% of the recoverable methanogenic activity. Thus it is evident from our observations that many methanogens adhere to protozoa and that the protozoa support methanogenic activity of the attached methanogens. When protozoa-free sheep were inoculated with rumen contents containing a complex population of protozoa, methanogenic activity of the microflora in SRF samples was not significantly enhanced.  相似文献   

9.
The study assessed the effects of different roughage to concentrate ratios on enteric methane production, rumen fermentation and microbial counts. These ratios were 80:20, 50:50, and 20:80 for diets 1, 2, and 3, respectively. No significant differences were observed in total gas production among diets; however, methane emissions increased (P?<?0.05) with increased roughage in diet. The pH was greater (P?<?0.05) in diet 1 compared to diets 2 and 3 (6.38 vs 6.17 and 6.07). In vitro dry matter digestibility increased with decreased roughage ratios (47.67, 61.67, 67.33 % for diets 1, 2 and 3, respectively). Similarly, total volatile fatty acids (mM/100 mL) also increased with decreased roughage ratios [diet 1 (5.38); diet 2 (6.30); diet 3 (7.37)]. Methanogen counts, total bacterial counts and protozoal counts were lower (P?<?0.05) in diet 3 compared to diet 1 and 2. However, total fungal counts were higher in diet 1 compared to diet 2 and 3. The results indicate that methane emission, enteric fermentation patterns, and change in methanogens population appear only with higher level of roughage. These findings are important for reducing methane without any impact on rumen performance.  相似文献   

10.
Aims:  To study the diversity of rumen methanogens in Murrah buffaloes ( Bubalus bubalis ) from North India by using 16S rRNA gene libraries obtained from the pooled rumen content from four animals and using suitable software analysis.
Methods and Results:  Genomic DNA was isolated and PCR was set up by using specific primers. Amplified product was cloned into a suitable vector and the positive clones were selected on the basis of blue–white screening and sequenced. The resulting nucleotide sequences were arranged in the phylogenetic tree. A total of 108 clones were examined, revealing 17 different 16S rRNA gene sequences or phylotypes. Of the 17 phylotypes, 15 (102 of 108 clones) belonged to the genus Methanomicrobium , indicating that the genus Methanomicrobium is the most dominant component of methanogen populations in Murrah buffaloes ( Bubalus bubalis ) from North India. The largest group of clones (102 clones) was more than 98% similar to Methanomicrobium mobile . BLAST analysis of the rumen contents from individual animals also revealed 17 different phylotypes with a range of 3–10 phylotypes per animal.
Conclusion:  Methanomicrobium phylotype is the most dominant phylotype of methanogens present in Murrah buffaloes ( Bubalus bubalis ).
Significance and Impact of the Study:  Effective strategies can be made to inhibit the growth of Methanomicrobium phylotype to reduce the methane emission from rumen contents and thus help in preventing global warming.  相似文献   

11.
The microorganisms in rumen contents were physically separated into five fractions on the basis of size using counter-flow centrifugal elutriation (CCE). The use of CCE allowed the microbial population to be separated in a highly repeatable manner into two protozoal and three bacterial fractions with minimal loss of material (dry weight), and with no visible damage to the microorganisms. A Coulter counter was used to determine the sizes of the organisms in each fraction. The modified CCE method is suitable for studies of the rumen microbial ecosystem that require separation of defined fractions of the population.  相似文献   

12.
Treatment with rumen fluid improves methane production from non-degradable lignocellulosic biomass during subsequent methane fermentation; however, the kinetics of xylanases during treatment with rumen fluid remain unclear. This study aimed to identify key xylanases contributing to xylan degradation and their individual activities during xylan treatment with bovine rumen microorganisms. Xylan was treated with bovine rumen fluid at 37°C for 48 h under anaerobic conditions. Total solids were degraded into volatile fatty acids and gases during the first 24 h. Zymography showed that xylanases of 24, 34, 85, 180, and 200 kDa were highly active during the first 24 h. Therefore, these xylanases are considered to be crucial for xylan degradation during treatment with rumen fluid. Metagenomic analysis revealed that the rumen microbial community’s structure and metabolic function temporally shifted during xylan biodegradation. Although statistical analyses did not reveal significantly positive correlations between xylanase activities and known xylanolytic bacterial genera, they positively correlated with protozoal (e.g., Entodinium, Diploplastron, and Eudiplodinium) and fungal (e.g., Neocallimastix, Orpinomyces, and Olpidium) genera and unclassified bacteria. Our findings suggest that rumen protozoa, fungi, and unclassified bacteria are associated with key xylanase activities, accelerating xylan biodegradation into volatile fatty acids and gases, during treatment of lignocellulosic biomass with rumen fluid.  相似文献   

13.
Condensed tannins in plants are found free and attached to protein and fibre but it is not known whether these fractions influence rumen degradation and microbial colonisation. This study explored the rumen degradation of tropical tannin-rich plants and the relationship between the disappearance of free and bound condensed tannin fractions and microbial communities colonising plant particles using in situ and in vitro experiments. Leaves from Calliandra calothyrsus, Gliricidia sepium, and Leucaena leucocephala, pods from Acacia nilotica and the leaves of two agricultural by-products: Manihot esculenta and Musa spp. were incubated in situ in the rumen of three dairy cows to determine their degradability for up to 96 h. Tannin disappearance was determined at 24 h of incubation, and adherent microbial communities were examined at 3 and 12 h of incubation using a metataxonomic approach. An in vitro approach was also used to assess the effects of these plants on rumen fermentation parameters. All plants contained more than 100 g/kg of condensed tannins with a large proportion (32–61%) bound to proteins. Calliandra calothyrsus had the highest concentration of condensed tannins at 361 g/kg, whereas Acacia nilotica was particularly rich in hydrolysable tannins (350 g/kg). Free condensed tannins from all plants completely disappeared after 24-h incubation in the rumen. Disappearance of protein-bound condensed tannins was variable with values ranging from 93% for Gliricidia sepium to 21% for Acacia nilotica. In contrast, fibre-bound condensed tannin disappearance averaged ~ 82% and did not vary between plants. Disappearance of bound fractions of condensed tannins was not associated with the degradability of plant fractions. The presence of tannins interfered with the microbial colonisation of plants. Each plant had distinct bacterial and archaeal communities after 3 and 12 h of incubation in the rumen and distinct protozoal communities at 3 h. Adherent communities in tannin-rich plants had a lower relative abundance of fibrolytic microbes, notably Fibrobacter spp. whereas, archaea diversity was reduced in high-tannin-containing Calliandra calothyrsus and Acacia nilotica at 12 h of incubation. Concurrently, in vitro methane production was lower for Calliandra calothyrsus, Acacia nilotica and Leucaena leucocephala although for the latter total volatile fatty acids production was not affected and was similar to control. Here, we show that the total amount of hydrolysable and condensed tannins contained in a plant govern the interaction with rumen microbes affecting degradability and fermentation. The effect of protein- and fibre-bound condensed tannins on degradability is less important.  相似文献   

14.
Abstract

The objective of the experiment was to evaluate the contribution of various ruminal microbial groups to the fermentation of cell walls of corn stover with different particle sizes based on ruminal gas production in vitro. Physical, chemical, and antibiotical methods were used to differentiate groups of bacteria, protozoa and fungi in rumen fluid, offering following rumen microbial groups: whole rumen fluid (WRF), bacterial (B), protozoal (P), fungal (F), bacterial plus protozoal (B + P), bacterial plus fungal (B + F), protozoal plus fungal (P + F), and negative control (CON). Cell walls from corn stover were ground and ball milled to produce two different particle sizes. The results showed that digestion of the cell walls was undertaken by the interaction among ruminal bacteria, protozoa and fungi, and such co-actions seemed to fail alternation by one of three microbial groups or any combinations. However, B + P group showed a significant contribution to the degradation of milled cell walls, and B + F group revealed a great synergy effect on the ground cell walls degradation. Particle size of cell walls also had a considerable influence on their fermentation extent instead of the fermentative patterns by various rumen microbial groups.  相似文献   

15.
The microorganisms in rumen contents were physically separated into five fractions on the basis of size using counter-flow centrifugal elutriation (CCE). The use of CCE allowed the microbial population to be separated in a highly repeatable manner into two protozoal and three bacterial fractions with minimal loss of material (dry weight), and with no visible damage to the microorganisms. A Coulter counter was used to determine the sizes of the organisms in each fraction. The modified CCE method is suitable for studies of the rumen microbial ecosystem that require separation of defined fractions of the population.  相似文献   

16.
The objective of the experiment was to evaluate the contribution of various ruminal microbial groups to the fermentation of cell walls of corn stover with different particle sizes based on ruminal gas production in vitro. Physical, chemical, and antibiotical methods were used to differentiate groups of bacteria, protozoa and fungi in rumen fluid, offering following rumen microbial groups: whole rumen fluid (WRF), bacterial (B), protozoal (P), fungal (F), bacterial plus protozoal (B + P), bacterial plus fungal (B + F), protozoal plus fungal (P + F), and negative control (CON). Cell walls from corn stover were ground and ball milled to produce two different particle sizes. The results showed that digestion of the cell walls was undertaken by the interaction among ruminal bacteria, protozoa and fungi, and such co-actions seemed to fail alternation by one of three microbial groups or any combinations. However, B + P group showed a significant contribution to the degradation of milled cell walls, and B + F group revealed a great synergy effect on the ground cell walls degradation. Particle size of cell walls also had a considerable influence on their fermentation extent instead of the fermentative patterns by various rumen microbial groups.  相似文献   

17.
When added to the diet of sheep, 2 g/d, Aspergillus oryzae fermentation extract (AO) stimulated total and cellulolytic bacterial numbers in rumen fluid by 34 and 90% respectively. AO had no effect on the numbers of protozoa or fungal zoospores. AO did not affect hydrogen production by the rumen fungi Neocallimastix frontalis (RE1), N. patriciarum (CX) or Piromonas communis (P) in pure culture or protozoal activity in vitro , estimated from the rate of breakdown of [14C] leucine-labelled Selenomonas ruminantium. It was concluded that increases in ruminal fibre digestion observed previously in animals fed AO, were most likely due to a stimulation of bacteria rather than eukaryotes in the rumen microbial population.  相似文献   

18.
Aims:  To assess the impact of Bacillus amyloliquefaciens and Microbacterium oleovorans on bacterial and fungal groups associated to the roots of field-grown maize.
Methods and Results:  Identification and count of bacterial and fungal culturable populations associated to the roots of maize seedlings, changes in culturable community structure according to the richness and diversity indexes concept and shifts in microbial activity through analysis of cellulolytic, ammonification and nitrification potentials were determined, in relation to kernel treatment with biological control agents. Following the treatment of maize kernels with B. amyloliquefaciens at 107 CFU ml−1, an increase in bacterial diversity was observed at the rhizoplane of resultant seedlings. Bacterial richness was significantly increased at the root inner tissues of seedlings treated with Mic. oleovorans . Fusarium , Aspergillus , Penicillium and Trichoderma were the main fungal genera isolated and there population sizes were unequally affected by the addition of biocontrol agents.
Conclusions:  Numbers and types of isolated bacteria and fungi changed in response to the addition of biocontrol agents, while microbial activity remained unchanged with respect to control.
Significance and Impact of the Study:  This study provides an insight of the effects of proven biocontrol agents on micro-organisms naturally associated to the target crop.  相似文献   

19.
Aim:  To assess the antimicrobial effects of hops ( Humulus lupulus L.) on hyper ammonia producing-bacteria (HAB), which catabolize amino acids and peptides in the bovine rumen.
Methods and Results:  When media were amended with dried hops or hops extract (30·7% lupulone), ammonia production by mixed rumen bacteria was inhibited. The growth and ammonia production of pure cultures ( Peptostreptococcus anaerobius, Clostridium aminophilum, or Clostridium sticklandii ) was inhibited by 30 ppm lupulone at pH 6·7, and bactericidal activity was observed at pH 5·6. When hops extract was added to energized cell suspensions, the intracellular pH rapidly decreased and intracellular potassium was lost.
Conclusions:  The three HAB species were sensitive to the antimicrobial components in hops, and the inhibition of ammonia production by mixed rumen bacteria indicates that similar effects could be expected in the rumen.
Significance and Impact of the Study:  As much as half of the amino acids consumed by ruminants can be lost due to microbial degradation in the rumen. This study supports the idea that biologically active plant metabolites can be used to mitigate this wasteful process.  相似文献   

20.
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号