首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ts1 is a neurovirulent spontaneous temperature-sensitive mutant of Moloney murine leukemia virus TB which causes hindlimb paralysis in mice. Previously, it had been shown that the temperature-sensitive defect resided in the env gene. At the restrictive temperature, the envelope precursor polyprotein, gPr80env, is inefficiently processed intracellularly into two cleavage products, gp70 and Prp15E. This inefficient processing of gPr80env is correlated with neurovirulence. In this study, it was shown that a single amino acid substitution, Val-25----Ile in gPr80env, is responsible for the temperature sensitivity, inefficient processing of gPr80env at the restrictive temperature, and neurovirulence of ts1. At the restrictive temperature, a steady-state level of nonprocessed, endoglycosidase H-sensitive gPr80env remained in the endoplasmic reticulum of cells infected by ts1, but no endoglycosidase H-resistant gPr80env and only trace amounts of gp70 were detected in the infected cells. Since the host cell-encoded processing protease resides in the cis cisternae of the Golgi apparatus, inefficient processing of gPr80env at the restrictive temperature is most likely due to inefficient transport of gPr80env from the endoplasmic reticulum to the cis cisternae of the Golgi apparatus rather than due to misfolded gPr80env being a poor substrate for the processing protease at the restrictive temperature.  相似文献   

2.
P F Szurek  E Floyd  P H Yuen    P K Wong 《Journal of virology》1990,64(11):5241-5249
ts1, a spontaneous temperature-sensitive mutant of Moloney murine leukemia virus TB, causes hind-limb paralysis in mice. A Val-25----Ile substitution in gPr80env is responsible for temperature sensitivity, inefficient processing of gPr80env, and neurovirulence. In this study, the Ile-25 in gPr80env was replaced with Thr, Ala, Leu, Gly, and Glu by site-directed mutagenesis of the codon for Ile-25 to generate a new set of mutant viruses, i.e., ts1-T, -A, -L, -G, and -E, respectively. The phenotypic characteristics of these mutant viruses differed from those of ts1. For each mutant, the degree of temperature sensitivity was correlated with the degree of inefficient processing of gPr80env, and the following rank order was observed for both parameters: ts1-E greater than ts1-G greater than ts1-L greater than ts1-A greater than ts1 greater than ts1-T. In FVB/N mice, mutant viruses of low and intermediate temperature sensitivity and inefficiency in processing of gPr80env were neurovirulent and consistently caused mutant-specific disease profiles: ts1-T caused severe whole-body tremor, ts1-A generally caused hind-limb paralysis, and ts1-L generally caused a delayed-onset paraparesis. By 150 days postinfection, FVB/N mice that were infected with ts1-G and -E, mutants of high temperature sensitivity and inefficiency in processing of gPr80env, had lymphoid leukemia instead of a neurological disease. These results suggest that the dynamics of gPr80env processing are important in determining the neurovirulent phenotype in vivo.  相似文献   

3.
4.
A temperature-sensitive mutant of Moloney murine leukemia virus TB (MoMuLV-TB), ts1, which is defective in intracellular processing of envelope precursor protein (Pr80env), also possesses the ability to induce hind-limb paralysis in infected mice. To investigate whether ts1 has acquired neurotropism and to determine to what extent it can replicate in the central nervous system, we compared viral titers in the spleen, plasma, spinal cord, and brain throughout the course of infection of mice infected with ts1 and parental wild-type (wt) MoMuLV-TB. In both the ts1- and wt-inoculated mice, the concentrations of infectious virus recovered from the plasma and spleen increased rapidly and reached a plateau by 10 days postinfection (p.i.). In contrast, virus concentrations in the spinal cord and brain of ts1-inoculated mice increased gradually and reached a titer comparable to that in the spleen and exceeding that in the plasma only at 25 to 30 days p.i. At this time, the virus titer was approximately 200X greater in ts1-infected spinal cord tissue and approximately 20X greater in ts1-infected brain tissue than in the same wt-infected tissues. Paralysis became evident at 25 to 30 days p.i. in ts1-inoculated mice, whereas the wt-inoculated mice were normal. In addition, a substantial amount of Pr80env was detected in the spinal cords of ts1-inoculated mice compared with that found in the spinal cords of wt-inoculated mice. The infectious virus isolated from ts1-infected nerve tissue was found to possess the characteristic phenotype of the ts1 virus. Microscopic lesions of ts1-inoculated mice at 30 days p.i. consisted of vacuolar degeneration of motor neurons and spongy change of white matter in the brain stem and spinal cord. Similar but less severe lesions were observed in wt-inoculated mice. With primary cultures of central nervous system tissue we showed that ts1 can infect and replicate in both neuron and glial cells. In contrast, although wt MoMuLV-TB replicated in glial cell-rich culture, viral replication was barely detectable in neuron-rich culture.  相似文献   

5.
The generation of cytopathic effects by murine leukemia viruses (MLVs) in different cell types correlates with the ability of the virus to induce thymic lymphoma. We showed that the induction of apoptosis in mink epithelial cells by mink cell focus-forming (MCF) MLV infection results in the accumulation of high levels of both unintegrated viral DNA and the envelope precursor polyprotein (gPr80env). Comparisons of envelope protein expression levels of plasmid clones of the env gene of the MCF13 and noncytopathic NZB-9 MLV strains demonstrated that the accumulation of MCF13 gPr80env results in endoplasmic reticulum stress and is sufficient for the induction of apoptosis.  相似文献   

6.
7.
The gene for the chromosomally encoded dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC 14990 has been cloned and characterized. The structural gene encodes a polypeptide of 161 amino acid residues with a calculated molecular weight of 18,417. This trimethoprim-sensitive (Tmps) DHFR, SeDHFR, differs in only three amino acids (Val-31-->Ile, Gly-43-->Ala, and Phe-98-->Tyr) from the trimethoprim-resistant (Tmpr) S1 DHFR encoded by transposon Tn4003. Since in addition the S. epidermidis gene also forms part of an operon with thyE and open reading frame 140 as in Tn4003, the chromosomally located gene encoding the Tmps SeDHFR is likely to be the molecular origin of the plasmid-located gene encoding the Tmpr S1 DHFR. Site-directed mutagenesis and kinetic analysis of the purified enzymes suggest that a single Phe-->Tyr change at position 98 is the major determinant of trimethoprim resistance.  相似文献   

8.
ts1 and ts7, the paralytogenic, temperature-sensitive mutants of Moloney murine leukemia virus (MoMuLV), together with their wild-type parent, MoMuLV-TB, were molecularly cloned. ts1-19, ts7-22, and wt-25, the infectious viruses obtained on transfection to NIH/3T3 cells of the lambda Charon 21A recombinants of ts1, ts7, and wt, were found to have retained the characteristics of their non-molecularly cloned parents. In contrast to the wt virus, ts1-19 and ts7-22 are temperature-sensitive, inefficient in the intracellular processing of Pr80env at the restrictive temperature, and able to induce paralysis in CFW/D mice. Like the non-molecularly cloned ts7, the ts7-22 virion was also shown to be heat labile. The heat lability of the ts7 virion distinguishes it from ts1. Endonuclease restriction mapping with 11 endonucleases demonstrated that the base composition of MoMuLV-TB differs from that of the standard MoMuLV, but no difference was detected between the molecularly cloned ts1 and ts7 genomes. However, ts1 and ts7 differ from MoMuLV in the loss or acquisition of four different restriction sites, whereas they differ from MoMuLV-TB in the loss or acquisition of three different restriction sites.  相似文献   

9.
10.
Brome mosaic virus (BMV) is a positive-strand RNA virus with a multipartite genome that causes symptomless infection in Nicotiana benthamiana. We have isolated and characterized a strain of BMV that produced uniform vein chlorosis in systemically infected N. benthamiana. Analysis of pseudorecombinants constructed by exchanging RNA 1 and 2 and RNA 3 components between wild-type (non-symptom-inducing) and vein chlorosis-inducing strains of BMV indicated that the genetic determinant for the induction of the chlorotic phenotype is located on RNA 3. Sequence analysis of progeny RNA 3 recovered from symptomatic N. benthamiana plants revealed that vein chlorosis is due to the single nucleotide transition 887G-->887A, which changes the codon for Val-266 to Ile-266 in the movement protein gene. The mutation had no detectable effect on the accumulation of virus in either inoculated or systematically infected leaves of N. benthamiana. The vein chlorosis phenotype is the manifestation of the substitution of Ile-266 for Val-266 in the movement protein gene, since additional alterations in this region (a silent mutation, i.e., 887GUU889-->GUC, and an alteration of valine to phenylalanine, i.e., 887GUU889-->887UUU889) resulted in symptomless infections on N. benthamiana. The modulation of the symptom phenotype by the substitution of Ile-266 for Val-266 is specific for N. benthamiana, since neither movement nor the symptom phenotype in barley plants was affected.  相似文献   

11.
A superfamily of transport proteins, which includes the lactose permease of Escherichia coli, contains a highly conserved motif, G-X-X-X-D/E-R/K-X-G-R/K-R/K, in the loops that connect transmembrane segments 2 and 3 and transmembrane segments 8 and 9. Previous analysis of this motif in the lactose permease (A. E. Jessen-Marshall, N. J. Paul, and R. J. Brooker, J. Biol. Chem. 270:16251-16257, 1995) has shown that the conserved glycine residue found at the first position in the motif (i.e., Gly-64) is important for transport function. Every substitution at this site, with the exception of alanine, greatly diminished lactose transport activity. In this study, three mutants in which glycine-64 was changed to cysteine, serine, and valine were used as parental strains to isolate 64 independent suppressor mutations that restored transport function. Of these 64 isolates, 39 were first-site revertants to glycine or alanine, while 25 were second-site mutations that restored transport activity yet retained a cysteine, serine, or valine at position 64. The second-site mutations were found to be located at several sites within the lactose permease (Pro-28 --> Ser, Leu, or Thr; Phe-29 --> Ser; Ala-50 --> Thr, Cys-154 --> Gly; Cys-234 --> Phe; Gln-241 --> Leu; Phe-261 --> Val; Thr-266 --> Iso; Val-367 --> Glu; and Ala-369 --> Pro). A kinetic analysis was conducted which compared lactose uptake in the three parental strains and several suppressor strains. The apparent Km values of the Cys-64, Ser-64, and Val-64 parental strains were 0.8 mM, 0.7 mM, and 4.6 mM, respectively, which was similar to the apparent Km of the wild-type permease (1.4 mM). In contrast, the Vmax values of the Cys-64, Ser-64, and Val-64 strains were sharply reduced (3.9, 10.1, and 13.2 nmol of lactose/min x mg of protein, respectively) compared with the wild-type strain (676 nmol of lactose/min x mg of protein). The primary effect of the second-site suppressor mutations was to restore the maximal rate of lactose transport to levels that were similar to the wild-type strains. Taken together, these results support the notion that Gly-64 in the wild-type permease is at a site in the protein which is important in facilitating conformational changes that are necessary for lactose translocation across the membrane. According to our tertiary model, this site is at an interface between the two halves of the protein.  相似文献   

12.
The roles played by the N-linked glycans of the Friend murine leukemia virus envelope proteins were investigated by site-specific mutagenesis. The surface protein gp70 has eight potential attachment sites for N-linked glycan; each signal asparagine was converted to aspartate, and mutant viruses were tested for the ability to grow in NIH 3T3 fibroblasts. Seven of the mutations did not affect virus infectivity, whereas mutation of the fourth glycosylation signal from the amino terminus (gs4) resulted in a noninfectious phenotype. Characterization of mutant gene products by radioimmunoprecipitation confirmed that glycosylation occurs at all eight consensus signals in gp70 and that gs2 carries an endoglycosidase H-sensitive glycan. Elimination of gs2 did not cause retention of an endoglycosidase H-sensitive glycan at a different site, demonstrating that this structure does not play an essential role in envelope protein function. The gs3- mutation affected a second posttranslational modification of unknown type, which was manifested as production of gp70 that remained smaller than wild-type gp70 after removal of all N-linked glycans by peptide N-glycosidase F. The gs4- mutation decreased processing of gPr80 to gPr90, completely inhibited proteolytic processing of gPr90 to gp70 and Pr15(E), and prevented incorporation of envelope products into virus particles. Brefeldin A-induced mixing of the endoplasmic reticulum and parts of the Golgi apparatus allowed proteolytic processing of wild-type gPr90 to occur in the absence of protein transport, but it did not overcome the cleavage defect of the gs4- precursor, indicating that gs4- gPr90 is resistant to the processing protease. The work reported here demonstrates that the gs4 region is important for env precursor processing and suggests that gs4 may be a critical target in the disruption of murine leukemia virus env product processing by inhibitors of N-linked glycosylation.  相似文献   

13.
Nanua S  Yoshimura FK 《Journal of virology》2004,78(21):12071-12074
We previously demonstrated that mink cells undergo apoptosis after MCF13 murine leukemia virus (MLV) infection. In this study, we observed that virus-infected mink epithelial cells had significantly larger amounts of steady-state levels of MCF13 MLV envelope precursor protein (gPr80(env)) than did Mus dunni fibroblasts, which are resistant to virus-induced cytopathicity. Infection of mink cells with the noncytopathic NZB-9 MLV did not result in the accumulation of gPr80(env). MCF13 MLV infection of mink cells produced low cell surface expression of envelope glycoprotein and less efficient spread of infectious virus. Western blot analysis of mink epithelial cells infected with MCF13 MLV showed an increase in GRP78/BiP, which was not observed for either mink cells infected with NZB-9 MLV or M. dunni fibroblasts infected with MCF13 MLV. MCF13 MLV infection of mink cells also resulted in a significant upregulation of CHOP/GADD153. These results indicate that the accumulation of MCF13 MLV gPr80(env) triggers endoplasmic reticulum stress, which may mediate apoptosis in mink epithelial cells.  相似文献   

14.
ts1, a temperature-sensitive mutant of Moloney murine leukemia virus TB, induces hind-limb paralysis in mice. The DNA of both the ts1 and Moloney murine leukemia virus TB env genes has been sequenced, and the encoded amino acid sequences have been deduced from the DNA sequences. Four amino acids in the ts1 envelope protein have been identified which may be responsible for the ts1 phenotype, which includes temperature sensitivity, nonprocessing of Pr80env, and neurovirulence.  相似文献   

15.
ts1 and ts7, two temperature-sensitive mutants of Moloney murine leukemia virus strain TB induce hind-limb paralysis in 100% of CFW/D mice injected. These two paralytogenic mutants also share a defect in their inability to process the env precursor protein, Pr80env, at the restrictive temperature. To identify the mutation(s) in the genomes of the paralytogenic mutants which cause the inability to process Pr80env efficiently and confer the ability to cause hind-limb paralysis instead of lymphoma, we constructed chimeric genomes between ts1 and Moloney murine leukemia virus or the TB strain of the virus. We identified a 3.9-kilobase-pair HindIII-PstI sequence from nucleotides 4895 through 8264 and 1 through 567 of ts1, comprising the 3' end of the pol and all of the env genes, the long terminal repeat, and the 5' noncoding sequence, as being responsible for the temperature sensitivity, the inefficiency in processing Pr80env, and the induction of paralysis. We extended these findings by demonstrating that the 1.6-kilobase-pair pol-gp70 HindIII-BamHI DNA sequence from nucleotides 4895 through 6537 of ts1 within the 3.9-kilobase-pair HindIII-PstI fragment is necessary for ts1 to induce paralysis. In addition, we showed that this 1.6-kilobase-pair fragment also controls the processing of Pr80env and the temperature sensitivity of ts1.  相似文献   

16.
To better understand the molecular mechanism involved in retrovirus ts1-induced paralytic disease in mice, we constructed a panel of recombinant viruses between ts1 and the wild-type viruses Moloney murine leukemia virus (MoMuLV) and MoMuLV-TB, a strain of MoMuLV. These recombinant viruses were constructed in an attempt to identify the sequence(s) in the genome of ts1 which contains the critical mutation(s) responsible for the neurovirulence of ts1. Two functionally distinct sequences in the genome of ts1 were found to be responsible for its paralytogenic ability. One of these sequences, the 0.77-kilobase-pair XbaI-BamHI (nucleotides 5765 to 6537) fragment which encodes the 5' half of gp70 and 11 base pairs upstream of the env gene coding sequence, determines the inability of ts1 to process Pr80env. The other sequence, the 2.30-kilobase-pair BamHI-PstI (nucleotides 538 to 8264 and 1 to 567) fragment, which comprises nearly two-thirds of the env gene, the long terminal repeat, and the 5' noncoding sequence, determines the enhanced neurotropism of ts1. Replacement of any one of these two regions with the homologous region from either one of the two wild-type viruses resulted in recombinant viruses which either totally failed to induce paralysis or induced a greatly attenuated form of paresis in some of the infected mice.  相似文献   

17.
Three human cytomegalovirus (HCMV) strains (VR4760, VR4955, and VR5120) showing double resistance to ganciclovir (GCV) and foscarnet (PFA) were isolated from three patients with AIDS who underwent multiple sequential courses of therapy with GCV and PFA (A. Sarasini, F. Baldanti, M. Furione, E. Percivalle, R. Brerra, M. Barbi, and G. Gerna, J. Med. Virol., 47:237-244, 1995). We previously demonstrated that the three strains were genetically unrelated and that each of them was present as a single viral population in vivo. Thus, in each of the three cases, a single viral strain was resistant to both GCV and PFA. In the present paper, we report the characterization of the molecular bases of the double resistance and demonstrate that the PFA resistance is associated with a slower replication of HCMV strains in cell cultures. Sequencing of the UL97 and UL54 genes, GCV anabolism assays, and marker transfer experiments showed that GCV resistance was due to single amino acid changes in the UL97 gene product (VR4760, Met-460 --> Ile; VR4955, Ala-594 --> Val; VR5120, Leu595 --> Ser), while single amino acid changes in domain II of the DNA polymerase (VR4760 and VR5120, Val-715 --> Met; VR4955, Thr-700 --> Ala) were responsible for both the PFA resistance and the slow-growth phenotype. Thus, in these three cases, double resistance to GCV and PFA was not due to a single mutation conferring cross-resistance or to the presence of a mixture of strains with different drug susceptibilities. The HCMV DNA polymerase recombinant strains carrying the mutations conferring PFA resistance were sensitive to GCV and (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC). In addition, the same UL54 mutations were responsible for the slow growth of the clinical isolates, since the recombinant strains showed a marked delay in immediate-early antigen plaque formation and a reduction of infectious virus yield compared with AD169, from which they were derived. These results may have some important implications for the successful isolation, propagation, and characterization of PFA-resistant strains from clinical samples containing mixed viral populations.  相似文献   

18.
This paper documents the effects of brefeldin A (BFA) on the processing and transport of viral envelope glycoproteins in a retrovirus-transformed murine erythroleukemia (MEL) cell line. BFA is a fungal metabolite that disrupts intracellular membrane traffic at the endoplasmic reticulum (ER)-Golgi complex junction. In MEL cells, BFA inhibited the processing of the newly synthesized precursor, gPr90env, of the murine leukemia virus envelope protein, gp70, and curtailed the budding of virions into the culture medium by blocking the transport of this protein out of the ER. The block resulted in the intracellular accumulation of gPr90env and two putative products of its processing (78 and 66 kDa). The results of endoglycosidase (endo) H and D digestion of the viral glycoproteins in the presence and absence of BFA indicated that (i) there was no glycoprotein processing during the first approximately 2 h of the BFA block; (ii) active Golgi enzymes relocated to the ER in approximately 2 h during BFA treatment, resulting in the production of partially endo H-resistant forms of the spleen focus-forming virus glycoprotein, gp55 (in controls, this glycoprotein was generally retained in the ER as an endo H-sensitive entity); and (iii) proteolytic processing of gPr90env to gp70 occurred prior to the acquisition of endo H resistance and at approximately the same time as endo D sensitivity (i.e. in a cis Golgi compartment). In control cells, the spleen focus-forming virus glycoprotein, gp55, underwent turnover with a half-life of approximately 5 h. In contrast, its turnover was considerably slower during BFA treatment (t 1/2 = approximately 20 h), suggesting that transport of gp55 out of the ER was required for its degradation or that BFA afforded it protection from proteolysis within the ER.  相似文献   

19.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino-acid residue in putative transmembrane helices IX and X and the short intervening loop was systematically replaced with Cys (from Asn-290 to Lys-335). Thirty-four of 46 mutants accumulate lactose to high levels (70-100% or more of C-less), and an additional 7 mutants exhibit lower but highly significant lactose accumulation. As expected (see Kaback, H.R., 1992, Int. Rev. Cytol. 137A, 97-125), Cys substitution for Arg-302, His-322, or Glu-325 results in inactive permease molecules. Although Cys replacement for Lys-319 or Phe-334 also inactivates lactose accumulation, Lys-319 is not essential for active lactose transport (Sahin-Tóth, M., Dunten, R.L., Gonzalez, A., & Kaback, H.R., 1992, Proc. Natl. Acad. Sci. USA 89, 10547-10551), and replacement of Phe-334 with leucine yields permease with considerable activity. All single-Cys mutants except Gly-296 --> Cys are present in the membrane in amounts comparable to C-less permease, as judged by immunological techniques. In contrast, mutant Gly-296 --> Cys is hardly detectable when expressed at a relatively low rate from the lac promoter/operator but present in the membrane in stable form when expressed at a high rate from T7 promoter. Finally, studies with N-ethylmaleimide (NEM) show that only a few mutants are inactivated significantly. Remarkably, the rate of inactivation of Val-315 --> Cys permease is enhanced at least 10-fold in the presence of beta-galactopyranosyl 1-thio-beta-D-galactopyranoside (TDG) or an H+ electrochemical gradient (delta mu-H+). The results demonstrate that only three residues in this region of the permease -Arg-302, His-322, and Glu-325-are essential for active lactose transport. Furthermore, the enhanced reactivity of the Val-315 --> Cys mutant toward NEM in the presence of TDG or delta mu-H+ probably reflects a conformational alteration induced by either substrate binding or delta mu-H+.  相似文献   

20.
Previously, we identified two mature glycoproteins, gp90, the surface glycoprotein, and gp20, the transmembrane protein, from avian reticuloendotheliosis virus and an avian reticuloendotheliosis virus env gene-encoded intracellular polyprotein gPr77env, but the precise relationship of gPr77env to the mature envelope proteins was not determined (W.-P. Tsai, T.D. Copeland, and S. Oroszlan, Virology 155:567-583, 1986). In the present study, using metabolic labeling of viral proteins with [35S]cysteine, radioimmunoprecipitation, and carbohydrate structure analysis, we have identified a higher-molecular-weight endo-H-resistant env gene-encoded polyprotein designated gPr115env in addition to the endo-H-sensitive gPr77env. It appears that gPr77env is the primary polyprotein precursor, modified with mannosyloligosaccharides that are processed into sialic-acid-rich extraordinarily large complex-type carbohydrates (up to 17 kilodaltons for each N-linked site) on the gp90 domain but not on the gPr22 domain. In this process, gPr77env is converted into the apparently endo-H-resistant secondary polyprotein, gPr115env, which is rapidly processed into gp90 and gPr22. The proteolytic processing which occurs only after the appearance of an endo-H resistant precursor is now clearly demonstrated for a retrovirus. Some important aspects of carbohydrate structure, including the site-specific glycosylation, as well as the intracellular location and nature of the potential enzyme involved in the proteolytic cleavage of gPr115env are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号