首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetyiases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In par- ticular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phos- phoryiation and intraceUular signaling upon proLonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetyiation is a critical mechanism that directLy affects VEGFR2 function.  相似文献   

2.
Kanda Y  Watanabe Y 《Life sciences》2007,80(15):1409-1414
Cigarette smoke has been firmly established as an independent risk factor for atherosclerosis and other vascular diseases. The proliferation and migration of vascular smooth muscle cells (VSMC) induced by growth factors have been proposed to play an important role in the progression of atherosclerosis. In the present study, we investigated the effects of nicotine, which is one of the important constituents of cigarette smoke, on vascular endothelial growth factor (VEGF) release, in rat VSMC. The stimulation of cells with nicotine resulted in a time- and concentration-dependent release of VEGF. Hexamethonium, an antagonist of nicotinic acetylcholine receptor (nAChR), inhibited nicotine-induced VEGF release. We next investigated the mechanisms by which nicotine induces VEGF release in the cells. The nicotine-induced VEGF release was inhibited by treatment with U0126, a selective inhibitor of MEK, which attenuated the nicotine-induced ERK phosphorylation. Nicotine induced a transient phosphorylation of ERK. Furthermore, AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) kinase, inhibited nicotine-induced ERK phosphorylation and VEGF release. These data suggest that nicotine releases VEGF through nAChR in VSMC. Moreover, VEGF release induced by nicotine is mediated by an EGFR-ERK pathway in VSMC. VEGF may contribute to the risk of cardiovascular diseases in cigarette smokers.  相似文献   

3.
Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention.  相似文献   

4.
To understand how vascular endothelial growth factor (VEGF) production is activated in malignant glioma cells, we employed protein tyrosine kinase (PTK) and protein kinase C (PKC) inhibitors to evaluate the extent to which these protein kinases were involved in signal transduction leading to VEGF production. PTK inhibitors blocked glioma proliferation and epidermal growth factor (EGF)-induced VEGF secretion, while H-7, a PKC inhibitor, inhibited both EGF-induced and baseline VEGF secretion. Phorbol 12-myristate 13-acetate (PMA), a non-specific activator of PKC, induced VEGF secretion by glioma cells, which was enhanced by calcium ionophore A23187, but completely blocked after prolonged treatment of cells with 1 microM PMA, by presumably depleting PKC. All inhibitors (genistein, AG18, AG213, H-7, prolonged PMA treatment) which inhibited EGF-induced VEGF secretion in glioma cells also inhibited cell proliferation at similar concentrations. However, PKC inhibition only blocked 50% of the VEGF secretion induced by growth factors (EGF, platelet-derived growth factor-BB, or basic fibroblast growth factor). This reserve capacity could be ascribed to a PKC-independent effect, or to PKC isoenzymes not down-regulated by PMA. These findings extend our previous assertion that VEGF secretion is tightly coupled with proliferation by suggesting that activation of convergent growth factor signaling pathways will lead to increased glioma VEGF secretion. Understanding of signal transduction of growth factor-induced VEGF secretion should provide a rational basis for the development of novel strategies for therapy.  相似文献   

5.
Mesenchymal stem cells (MSCs) transplantation has been proposed as a promising means for ischemic heart disease. Vascular endothelial growth factor (VEGF) has been demonstrated to play an important role in MSCs transplantation. Angiotensin II (AngII), the most important effector peptide of the renin-angiotensin system (RAS), is also an angiogenesis factor. However, the effects of AngII on VEGF expression in MSCs and the related signaling cascades were unknown. In this experiment, we first demonstrated that incubation of MSCs with AngII-induced a rapid increase in VEGF mRNA expression and protein synthesis. However, these effects were abolished by prior treatment with AngII type 1 (AT1) receptor antagonist losartan while not AngII type 2 (AT2) receptor antagonist PD123319. The addition of either the extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 or Akt inhibitor LY294002 also led to a marked inhibition of the AngII-induced VEGF mRNA and protein production. Taken together, these results suggested that AngII stimulated the synthesis of VEGF in MSCs through ERK1/2 and Akt pathway via AT1 receptor.  相似文献   

6.
Angiogenesis is essential for transplantation of mesenchymal stem cells (MSCs). Vascular endothelial growth factor (VEGF) is one of the most potent angiogenic factors identified to date. Elevated VEGF levels in MSCs correlate with the potential of MSCs transplantation. As an indirect angiogenic agent, transforming growth factor-β1 (TGF-β1) plays a pivotal role in the regulation of vasculogenesis and angiogenesis. However, the effect of TGF-β1 on VEGF synthesis in MSCs is still unknown. Besides, the intracellular signaling mechanism by which TGF-β1 stimulates this process remains poorly understood. In this article, we demonstrated that exposure of MSCs to TGF-β1 stimulated the synthesis of VEGF. Meanwhile, TGF-β1 stimulated the phosphorylation of Akt and extracellular signal-regulated kinase 1/2 (ERK1/2). Moreover, Ly 294002, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K)/Akt significantly attenuated the VEGF synthesis stimulated by TGF-β1. Additionally, U0126, a specific inhibitor of ERK1/2, also significantly attenuated the TGF-β1-stimulated VEGF synthesis. These results indicated that TGF-β1 enhanced VEGF synthesis in MSCs, and the Akt and ERK1/2 activation were involved in this process.  相似文献   

7.
Lai L  Pen A  Hu Y  Ma J  Chen J  Hao CM  Gu Y  Lin S 《Life sciences》2007,81(7):570-576
Accumulating evidence shows that aldosterone plays an important role in the pathogenesis of renal fibrosis but its mechanism has not been completely defined. Recently, exogenous administration of aldosterone significantly alleviated ischemic states in a model of femoral artery ligated rats, accompanied by an obvious enhancement of VEGF upregulation. We hypothesized that aldosterone may also regulate the expression of VEGF in the kidney. To confirm this, cultured cortical collecting duct epithelial cells (M-1 cell line) were incubated with aldosterone and control media, respectively. The pathway by which aldosterone regulates VEGF expression was tested by the administration of spironolactone, a specific mineralocorticoid receptor (MR) antagonist. VEGF expression was detected by immunofluorescence staining, ELISA, Western blot and RT-PCR. Aldosterone induced an elevation of VEGF excretion in a time- and dose-dependent manner. Western blotting showed a 1.4-fold elevation in cytosolic VEGF expression following aldosterone (10(-8) M) incubation for 48 h (p<0.01). After aldosterone (10(-7) M) incubation for 48 h, the mRNA level of VEGF164 and VEGF120 showed 1.8- and 1.7-fold increases, respectively (p<0.01). This upregulation was almost completely blocked by spironolactone as shown both by mRNA levels and cytosolic protein levels. In addition, the mRNA of aldosterone receptor was detected in M-1 cells. We demonstrated for the first time that aldosterone induced VEGF expression in M-1 cells, an effect mediated by classic mineralocorticoid receptor. This finding provides experimental evidence for the local non-hemodynamic action of aldosterone.  相似文献   

8.
In diabetes mellitus (DM), hyperglycemia causes cardiovascular lesions through endothelial dysfunction. Monocyte chemoattractant protein-1 (MCP-1) is implicated in the pathogenesis of cardiovascular lesions. By using human umbilical vein endothelial cells, we investigated the effect of hyperglycemia on MCP-1 production and its signaling pathways. Chronic incubation with high glucose increased mRNA expression and production rate of MCP-1 in a time (1-7 days)- and concentration (10-35 mM)-dependent manner. Chronic exposure to high glucose resulted in enhancement of generation of reactive oxygen species (ROS), as determined by increasing level of 2,7-dichlorofluorescein (DCF), and subsequent activation of p38 mitogen-activated protein kinase (MAPK). Neither c-Jun NH(2)-terminal kinase nor extracellular signal-regulated kinase1/2 was affected. SB203580 or FR167653, p38 MAPK specific inhibitors, completely suppressed MCP-1 expression. Catalase suppressed p38 MAPK phosphorylation and MCP-1 expression. These results indicate that hyperglycemia can accelerate MCP-1 production through the mechanism involving p38 MAPK, ROS-sensitive signaling pathway, in vascular endothelial cells.  相似文献   

9.
Fan B  Wang YX  Yao T  Zhu YC 《生理学报》2005,57(1):13-20
血管内皮细胞中血管内皮生长因子(vascular endothelial growthfactor,VEGF)的合成增加在促进血管新生的过程中起着非常重要的作用.然而低氧诱导VEGF分泌的细胞内信号转导机制还不是很清楚.人脐静脉内皮细胞系(ECV304)在低氧或常氧的状态下培养12~24 h后分别用实时定量PCR和Western blot的方法来检测VEGF mRNA的表达及ERK1/2和p38激酶的磷酸化水平.分泌到培养液中的VEGF蛋白用酶联免疫吸附(ELISA)的方法来检测.业已报道,ERK的抑制剂PD98059能够抑制低氧诱导的VEGF基因的表达,根据这个报道,我们发现在低氧情况下,ECV304细胞的ERK1/2磷酸化水平增高以及VEGF的合成增加等这些变化也能被PD98059所抑制.本次实验的新发现是p38激酶的激活在低氧诱导VEGF合成增加中的作用.p38激酶的抑制剂SB202190能抑制低氧诱导的VEGF合成增加.这些数据首次直接证实了p38激酶在低氧诱导人内皮细胞分泌VEGF增加过程中的作用.  相似文献   

10.
Kakudo N  Kusumoto K  Wang YB  Iguchi Y  Ogawa Y 《Life sciences》2006,79(19):1847-1855
When recombinant human bone morphogenetic protein-2 (rhBMP-2) is implanted in soft tissues, bony tissue is induced during the course of endochondral ossification. The relationship between endochondral ossification and vascularization is important in bone formation, and vascular endothelial growth factor (VEGF) is considered to play an important role in this process. In this study, the immunohistological localization of VEGF was investigated in rhBMP-2-induced ectopic endochondral ossification in the calf muscle of rats. In addition, the characteristics of anti-VEGF antibody-reactive cells were histologically investigated using electron microscopy to examine the cause of endochondral ossification induced by recombinant human bone morphogenetic protein-2. The role of VEGF in rhBMP-2-induced osteoinduction and vascular induction was studied by observing the relationship between the localizations of anti-VEGF antibody-reactive cells and vascularization. During the process of rhBMP-2-induced ectopic endochondral ossification, fibroblast-like cells, which were located at the margin of the implant and reactive to BMP-2 at 5 days, were positive for VEGF immunostaining. Hypertrophic chondrocytes appeared 9 days and osteoblasts appeared 14 to 21 days after implantation, and all these cells were reactive with anti-VEGF antibody. Bony trabeculae subsequently appeared in the muscle, and new blood vessels were formed alongside the trabeculae. When VEGF was added to rhBMP, more new blood vessels and bone were formed in the induced bone. These findings suggested that rhBMP-2 induced the differentiation of undifferentiated mesenchymal cells to chondrocytes and osteoblasts, and these differentiated cells expressed VEGF, creating an advantageous environment for vascularization in bony tissue.  相似文献   

11.
Zheng HL  Wen HX  Liu GY  Ni J 《生理学报》2008,60(2):275-278
本文旨在研究血小板活化因子(platelet-activating factor,PAF)对大鼠黄体细胞孕酮分泌及血管内皮生长因子(vascularendothelial growth factor,VEGF)mRNA表达的作用.将未成年(25~28 d)Sprague-Dawley雌性大鼠颈部皮下注射50 IU孕马血清促性腺激素(pregnant mare serum gonadotrophin,PMSG),48 h后注射25 IU人绒毛膜促性腺激素(human chorionicgonadotrophin.hCG)诱导卵泡发育和黄体生成,第6天(hCG注射日为第1天)收集卵巢黄体细胞,体外培养24 h后,不加或加入不同剂量(0.1 μg/mL、1 μg/mL、10 μg/mL)PAF,37℃、5%CO2培养箱内培养24 h.用放射免疫方法测定培养液中孕酮的含量,流式细胞仪和RT-PCR方法检测黄体细胞凋亡以及VEGF mRNA的表达.结果显示,PAF促进黄体细胞孕酮分泌,1 μg/mL PAF作用最强(P<0.05);PAF促进黄体细胞凋亡无明显剂量依赖性,但10 μg/mL PAF显著促进大鼠黄体细胞凋亡(P<0.05):PAF刺激黄体细胞VEGF mRNA表达,1 μg/mL PAF效果最显著(P<0.01).结果提示,PAF可通过调节黄体细胞孕酮的分泌和VEGF mRNA的表达来促进黄体形成.  相似文献   

12.
13.
14.
We investigated the effect of heat-killed Listeria monocytogenes (HKLM) on the expression of vascular endothelial growth factor (VEGF) in RAW264.7 macrophage-like cells. The expression of VEGF was induced in RAW264.7 cells treated with HKLM. Pretreatment of cells with cycloheximide, a protein synthesis inhibitor, inhibited the induction of VEGF mRNA by HKLM. Induction of VEGF by HKLM was partially inhibited by treatment of cells with SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor, or a neutralizing antibody against tumor necrosis factor-alpha (TNF-alpha). In addition, HKLM induced phosphorylation of p38 MAPK. These results suggest that p38 MAPK and TNF-alpha are involved in the VEGF expression induced by HKLM in RAW264.7 cells. We confirmed that increased VEGF expression is immunohistochemically detected in splenic macrophages of mice infected with L. monocytogenes (L. monocytogenes). VEGF is thought to be involved in inflammatory reactions induced by L. monocytogenes infection.  相似文献   

15.
It is well known that angiogenesis is essential for the replacement of cartilage by bone during skeletal growth and regeneration. To address angiogenesis of endochondral ossification in the condyle, we examined the appearance of vascular endothelial growth factor (VEGF) and its receptor Flt-1 in condylar cartilage of the growing rat. The early expression of VEGF at various sites during condylar cartilage development indicates that VEGF plays a role in the regulation of angiogenesis at each site of bone formation. From the findings of Flt-1 immunoreactivity, the VEGF produced by the chondrocytes of the hypertrophic zone should contribute to the promotion of endothelial cell proliferation and to stimulate migration and activation of osteoclasts in condylar cartilage, resulting in the invasion of these cells into the mineralized zone.Junko Aoyama and Eiji Tanaka contributed equally to this work  相似文献   

16.
Sofalcone, 2′-carboxymethoxy-4,4-bis(3-methyl-2-butenyloxy)chalcone, is an anti-ulcer agent that is classified as a gastric mucosa protective agent. Recent studies indicate heat shock proteins such as HSP32, also known as heme-oxygenase-1(HO-1), play important roles in protecting gastrointestinal tissues from several stresses. We have previously reported that sofalcone increases the expression of HO-1 in adipocytes and pre-adipocytes, although the effect of sofalcone on HO-1 induction in gastrointestinal tissues is not clear. In the current study, we investigated the effects of sofalcone on the expression of HO-1 and its functional role in rat gastric epithelial (RGM-1) cells. We found that sofalcone increased HO-1 expression in RGM-1 cells in both time- and concentration-dependent manners. The HO-1 induction was associated with the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in RGM-1 cells. We also observed that sofalcone increased vascular endothelial growth factor (VEGF) production in the culture medium. Treatment of RGM-1 cells with an HO-1 inhibitor (tin-protoporphyrin), or HO-1 siRNA inhibited sofalcone-induced VEGF production, suggesting that the effect of sofalcone on VEGF expression is mediated by the HO-1 pathway. These results suggest that the gastroprotective effects of sofalcone are partly exerted via Nrf2-HO-1 activation followed by VEGF production.  相似文献   

17.
Vascular endothelial cells (ECs) are usually difficult to culture in a large scale because of their complicated requirements for cell growth. As the vascular endothelial growth factor (VEGF) is a key growth factor in the EC culture, we transfected human umbilical vein endothelial cells (HUVEC) using a plasmid containing VEGF gene and let them grow in a culture medium eliminated an important supplement, endothelail cell growth supplement (ECGS). The expression of VEGF by HUVEC tansfected with VEGF gene was not enough to stimulate the growth of HUVEC, only 40% of maximum cell density obtainable in the presence of ECGS., However, when the culture medium was supplied with 2.5 ng/mL of basic fibroblast growth factor (bFGF), a synergistic effect of VEGF and bFGF was observed. In this case, the final cell density was recovered up to about 78% of maxium value.  相似文献   

18.
Proteome analysis of human umbilical endothelial cells was performed to identify proteins that are modified during vascular endothelial cell growth factor (VEGF)-induced transition from the quiescent into the proliferating-migrative phenotype. Subtractive analysis of two-dimensional gel patterns of human endothelial cells, before and after stimulation with VEGF(165), revealed differences in 85 protein spots. All proteins were identified by peptide sequencing and peptide mass fingerprinting using an electrospray spectrometer. The proteins identified were members of specific families including Ca(2+)-binding proteins, fatty-acid binding proteins, structural proteins, and chaperones. Remarkably, there was a massive activation of cellular machinery for both protein synthesis and protein degradation. Thus, among up-regulated proteins there were members of all groups of heat shock proteins (HSPs; HSP 27, HSP 60, HSP 70p5, HSP 70p8, HSP 90, and HSP 96) and some other proteins showing either chaperone activity or which participate in assembly of multimolecular structures (TCP-1, desmoplakins, junction plakoglobin, GRP 94, thioredoxin related protein, and peptidylprolyl isomerase). The increased expression of HSPs was confirmed at the mRNA level at different stages of treatment with VEGF. Similarly, components of the proteolytic machinery for the degradation of misfolded proteins (ER-60, cathepsin D, proteasome subunits, and protease inhibitor 6) were also up-regulated. On the other hand, changes in the expression of structural proteins (T-plastin, vimentin, alpha tubulin, actin, and myosin) could account, at least in part, for the different morphologies displayed by migrating endothelial cells. In summary, our data show that VEGF levels similar to those during physiological stresses induce a number of genes and multiple endogenous pathways seem to be engaged in restoring cellular homeostasis. To ensure cell survival, the molecular chaperones (the heat shock family of stress proteins) are highly up-regulated providing protein-folding machinery to repair or degrade misfolded proteins.  相似文献   

19.
Interleukin-6 (IL-6) is a proinflammatory cytokine associated with the disease status of gastric carcinoma (GC). Vascular endothelial growth factor (VEGF) is a potent tumor angiogenic factor in GC. In this study, we attempted to clarify whether IL-6 can regulate VEGF and angiogenesis in GC. GC samples from 54 surgical specimens were subjected to immunohistochemical examination of IL-6, VEGF, and tumor microvessels, and results showed that IL-6 was positively correlated with VEGF expression and tumor vasculature. We determined VEGF expression in four GC cell lines by ELISA, revealing that GC cells can produce significant amount of VEGF with increasing dose and duration of IL-6 stimulation. Next, a luciferase reporter gene assay was employed to determine the signaling pathway driving the VEGF promoter by IL-6, which showed that the JAK/STAT pathway is involved in the stimulation of VEGF gene expression. The effects of IL-6 on angiogenesis in vitro and in vivo were evaluated by HUVEC studies and the Matrigel plug assay, respectively. Results showed that IL-6 effectively promoted HUVEC proliferation and tube formation in vitro and Matrigel plug vascularization in vivo, primarily by inducing VEGF in GC. This study provides evidence that the multifunctional cytokine, IL-6, may induce VEGF expression which increases angiogenesis in gastric carcinogenesis.  相似文献   

20.
Whole-body hyperthermia (WBH) promotes cardiac protection against ischemia/reperfusion injury, in part by up-regulation of heat shock proteins (HSP). Whether heat stress also promotes up-regulation of angiogenic factors or induces endothelial cell proliferation is unknown. We studied the effects of heat stress on up-regulation of vascular endothelial growth factor (VEGF) and growth of new blood vessels following WBH. Anesthetized rats were subjected to WBH at 42 degrees C for 15 min. The control (n=23) and heated (n=55) groups were allowed to recover for 4, 12, 24, 48, or 72 h prior to harvesting the heart for Western Blot and immunohistochemical assessment of VEGF, HSP70, and platelet endothelial cell adhesion molecular-1 (PECAM-1). A significant increase in VEGF and HSP70 expression was observed as early as 4 h post-heating. The Western Blot analysis revealed a close temporal correlation between up-regulation of HSP70 and VEGF. Maximum VEGF and HSP70 expression occurred at 12 and 24 h post-heating in the left and right ventricles, respectively. The right ventricle showed the greatest expression of both VEGF and HSP70. Immunostaining revealed that VEGF was focally increased in the endothelial cells of capillaries, small arteries, and in interstitium. At 48 and 72 h post-heating, multiple areas of extensive capillary proliferation occurred in the epicardial region of the right ventricle. These observations were verified by quantitative analysis of the density of blood vessels as determined by PECAM-1 staining. Our experiments show that sublethal heat stress can lead to upregulation of both VEGF and HSP70 in cardiac tissue and promote focal endothelial proliferation in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号