首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A mutant (furA3) was isolated from the S1 wild-type strain of Nectria haematococca on the basis of its resistance to 5-fluorouracil (5FU). This mutant has greatly reduced activity of uracil phosphoribosyltransferase, a pyrimidine salvage enzyme catalyzing the synthesis of UMP from uracil. The metabolism of 5FU was examined in both strains by using 19F nuclear magnetic resonance spectroscopy. In the S1 strain, 5FU appears to be metabolized by two pathways operating simultaneously: (i) conversion to fluoronucleotides and (ii) degradation into alpha-fluoro-beta-alanine. The furA3 mutant shows metabolic changes consistent with a uracil phosphoribosyltransferase lesion, since it takes up 5FU and forms a small amount of alpha-fluoro-beta-alanine but does not synthesize fluoronucleotides. Since pigment synthesis is strongly enhanced by 5FU in the S1 wild-type strain but not in the furA3 mutant, these results support the hypothesis that 5FU stimulation of secondary metabolism in N. haematococca is not mediated by the drug itself but involves a phosphorylated anabolite.  相似文献   

3.
A mutant (furA3) was isolated from the S1 wild-type strain of Nectria haematococca on the basis of its resistance to 5-fluorouracil (5FU). This mutant has greatly reduced activity of uracil phosphoribosyltransferase, a pyrimidine salvage enzyme catalyzing the synthesis of UMP from uracil. The metabolism of 5FU was examined in both strains by using 19F nuclear magnetic resonance spectroscopy. In the S1 strain, 5FU appears to be metabolized by two pathways operating simultaneously: (i) conversion to fluoronucleotides and (ii) degradation into alpha-fluoro-beta-alanine. The furA3 mutant shows metabolic changes consistent with a uracil phosphoribosyltransferase lesion, since it takes up 5FU and forms a small amount of alpha-fluoro-beta-alanine but does not synthesize fluoronucleotides. Since pigment synthesis is strongly enhanced by 5FU in the S1 wild-type strain but not in the furA3 mutant, these results support the hypothesis that 5FU stimulation of secondary metabolism in N. haematococca is not mediated by the drug itself but involves a phosphorylated anabolite.  相似文献   

4.
Mutants defective in utilization of uracil at low concentrations have been isolated and characterized. The mutations in question (uraA) map close to the upp gene encoding uracil phosphoribosyltransferase. By complementation analysis, a plasmid that complements the uraA mutation has been isolated. The uraA gene was shown to be the second gene in a bicistronic operon with upp as the promoter proximal gene. The nucleotide sequence of the gene was determined, and the gene encodes a hydrophobic membrane protein with a calculated Mr of 45,030. The UraA protein has been identified in sodium dodecyl sulfate-polyacrylamide gels in the membrane fraction of minicells harboring the uraA plasmids.  相似文献   

5.
6.
Disruption experiments targeted at the Bacillus licheniformis degSU operon and GFP-reporter analysis provided evidence for promoter activity immediately upstream of degU. pMutin mediated concomitant introduction of the degU32 allele--known to cause hypersecretion in Bacillus subtilis-- resulted in a marked increase in protease activity. Application of 5-fluorouracil based counterselection through establishment of a phosphoribosyltransferase deficient Δupp strain eventually facilitated the marker-free introduction of degU32 leading to further protease enhancement achieving levels as for hypersecreting wild strains in which degU was overexpressed. Surprisingly, deletion of rapG--known to interfere with DegU DNA-binding in B. subtilis--did not enhance protease production neither in the wild type nor in the degU32 strain. The combination of degU32 and Δupp counterselection in the type strain is not only equally effective as in hypersecreting wild strains with respect to protease production but furthermore facilitates genetic strain improvement aiming at biological containment and effectiveness of biotechnological processes.  相似文献   

7.
Mycoplasma pneumoniae (Mpn) is a human pathogen causing acute respiratory diseases and accounts for approximately 30% cases of community-acquired pneumonia. Co-infection with Mycoplasmas compromises the efficacy of anticancer and antiviral nucleoside analog-based drugs due to the presence of Mycoplasma thymidine phosphorylase (TP). In this study, a TP-deficient strain of Mpn was generated in order to study the effect of Mpn TP in the metabolism of nucleoside analogs. Deficiency in TP activity led to increased uptake and incorporation of radiolabeled deoxyuridine and uracil but thymidine uptake was not affected. The activities of enzymes in the salvage of thymidine and deoxyuridine, e.g., thymidine kinase and uracil phosphoribosyltransferase were upregulated in the TP-deficient mutant, which may explain the increased uptake of deoxyuridine and uracil. Thirty FDA-approved anticancer and antiviral nucleoside and nucleobase analogs were used to screen their inhibitory activity toward the TP mutant and the wild type strain. Seven analogs were found to inhibit strongly the growth of both wild type and TP mutant. Differences in the inhibitory effect of several purine analogs between the two strains were observed. Further study is needed in order to understand the mechanism of inhibition caused by these analogs. Our results indicated that TP is not an essential gene for Mpn survival and TP deficiency affects other enzymes in Mpn nucleotide metabolism, and suggested that Mycoplasma nucleotide biosynthesis pathway enzymes are potential targets for future development of antibiotics.  相似文献   

8.
Uracil phosphoribosyltransferase from Escherichia coli K12 was purified to homogeneity as determined by polyacrylamide gel electrophoresis. For this purpose a pyrimidine-requiring strain harboring the upp gene on a ColE1 plasmid was used, which showed 15-times higher uracil phosphoribosyltransferase activity in a crude extract. When this strain was grown under conditions of uracil starvation, an additional 10-times elevation of the enzyme activity was obtained. The molecular weight of uracil phosphoribosyltransferase was determined to be 75000; the enzyme consists of three subunits with a molecular weight of 23500. Uracil phosphoribosyltransferase is specific for uracil and some uracil analogues. The apparent Km values for uracil and PRib-PP were 7 microM and 300 microM, respectively. As an effector of enzyme activity, GTP lowered the Km for PRib-PP to 90 microM and increased the Vmax value 2-fold, but had no effect on the Km for uracil. The effect of GTP was found to be pH-dependent. The enzymatic characterization of uracil phosphoribosyltransferase and the observed regulation of its synthesis emphasizes the role of the enzyme in pyrimidine salvage.  相似文献   

9.
D P Nagle  Jr  R Teal    A Eisenbraun 《Journal of bacteriology》1987,169(9):4119-4123
Growth of Methanobacterium thermoautotrophicum Marburg is inhibited by the pyrimidine, 5-fluorouracil (FU). It was shown previously that methanogenesis is not inhibited to the same extent as growth. A spontaneously occurring FU-resistant strain (RTAE-1) was isolated from a culture of strain Marburg. The growth of both strains was inhibited by 5-fluorodeoxyuridine but not 5-fluorocytosine, and the wild type was more susceptible to inhibition by 5-azauracil and 6-azauracil than was strain RTAE-1. The cellular targets for the pyrimidine analogs are not known. When the accumulation of 14C-labeled uracil or FU by the two strains was compared, the wild type took up 15-fold more radiolabel per cell than did the FU-resistant strain. In the wild type, radiolabel from uracil was incorporated into the soluble pool, RNA, and DNA. The metabolism of uracil appeared to involve a uracil phosphoribosyltransferase activity. Strain Marburg extracts contained this enzyme, whereas FU-resistant strain RTAE-1 extracts had less than 1/10 as much activity. Although it is possible that a change in permeability to the compounds plays a role in the stable resistance of strain RTAE-1, the fact that it lacks the ability to metabolize pyrimidines to nucleotides is sufficient to account for its phenotype.  相似文献   

10.
Errata     
Mutants of Escherichia coli K-12 which are defective in components of transport systems for uracil and uridine were isolated and utilized to characterized the transport mechanism of uracil and uridine. Mutant U?, isolated from a culture of the parent strain, is resistant to 5-fluorouracil and is deficient in the uracil transport system. Mutant UR?, isolated from a culture of the parent strain, is resistant to a low concentration of showdomycin and lacks the capacity to transport intact uridine. Mutant U?UR?isolated from a culture of mutant U?, is resistant to a low concentration of showdomycin and is defective in both uracil and intact uridine transport processes. Mutant UR?R? was isolated from a culture of mutant UR?, and is resistant to high concentration of showdomycin. This mutant is defective for transport of intact uridine and in addition lacks the transport system for the ribose moiety of uridine. Characteristics of uracil and uridine transport in parent and mutant cells demonstrate the existence of specific transport processes for uracil, intact uridine and the uracil and ribose moieties of uridine. Mutants U? and UR?, which are defective for uracil transport, lack uracil phosphoribosyltransferase activity and retain a small but significant capacity to transport uracil. The data support the conclusion that uracil is transported by two mechanisms, the major one of which requires uracil phosphoribosyltransferase activity, while the other process involves the transport of uracil as such. The characteristics of uridine transport in parent and mutant strains show that, in addition to transport as the intact nucleoside, uridine is rapidly cleaved to the uracil and ribose moieties. The latter is transported into the cell by a process which, in contrast to transport of intact uridine, does not require an energy source. The uracil moiety is released into the medium and is transported by the uracil transport system. Whole cells of the parent and mutant strains differ in their ability to cleave uridine even though cell-free extracts of all the strains have similar uridine phosphorylase activity. The data implicate a uridine cleavage enzyme in a group transport of the ribose moiety of uridine, a process which is nonfunctional in mutants which lack the capacity to transport the ribose moiety of uridine. A common transport component for this process and the transport of intact uridine is indicated by similarities in the inhibitory effects of heterologous nucleosides on these process.  相似文献   

11.
An adenosine-sensitive mutant was isolated from Escherichia coli K12 derivative strain C600. This mutant (designated as PS100) grew slower than parental strain C600in a minimal medium, and its growth was completely inhibited by addition of all kinds of purine bases, nucleosides and nucleotides tested. On the other hand, this growth inhibitory effect of purine derivatives was reversed by co-addition of uridine to the medium. Other pyrimidine derivatives such as uracil, UMP,cytosine, cytidine, CMP and thymidine were also effective for this reversal. The mutant strain, PS100, showed a lower level (7%) of activity for orotate phosphoribosyltransferase than strain C600 did, and accumulated orotic acid in the growth medium. Lysogenization of strain PS100 with λ transducing phage containing the gene for orotate phosphoribosyltransferase (pyrE) resulted in restoration of the activity for orotate phosphoribosyltransferase and removal of growth inhibition by purine derivatives.  相似文献   

12.
Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative amino acid sequences were deduced. One gene showed a high level of homology to UPRTases from other organisms, whereas the other gene with a low level of homology to other UPRTases turned out to be the pyrR gene--the repressor of the pyr operon. The role of these genes in uracil metabolism was established by an analysis of the phenotypes of upp and pyrR mutants.  相似文献   

13.
L Kern  J de Montigny  R Jund  F Lacroute 《Gene》1990,88(2):149-157
The FUR1 gene of Saccharomyces cerevisiae encodes uracil phosphoribosyltransferase (UPRTase) which catalyses the conversion of uracil into uridine 5'-monophosphate (UMP) in the pyrimidine salvage pathway. The FUR1 gene is included in a 2.1 kb genomic segment of DNA and is transcribed into a 1 kb poly(A)+mRNA. Sequencing has determined a 753 bp open reading frame capable of encoding a protein of 251 amino acids. The FUR1 genes for three recessive fur1 alleles, having different sensibilities to 5-fluorouridine (5-FUR) but identical levels of resistance to 5-fluorouracil (5-FU), were cloned and sequenced. Single bp changes located in different regions of the gene were found in each mutant. Two in vitro-constructed deletions of the FUR1 gene have been integrated at the chromosomal locus, giving strains with 5-FURR and 5-FURR mutant phenotype. Assays of UPRTase, uridine kinase, uridine ribohydrolase and uridine 5'-monophosphate nucleotidase enzymatic activities, in extracts of strains where the FUR1 gene is overexpressed or deleted, indicate that the FUR1 encoded protein possesses only UPRTase activity.  相似文献   

14.
A pyrimidine phosphoribosyltransferase, previously shown to utilize 5-fluorouracil and possibly also uracil and orotate (Reyes, P. (1969) Biochemistry 8, 2057-2062), has been purified about 100-fold from murine leukemia P1534J. Roughly 20% of the original activity was recovered to yield an enzyme preparation with a specific activity of 7.4 mumol of 5-fluorouracil utilized/hour/mg of protein. Disc gel electrophoresis of this preparation revealed the presence of a major band of protein accompanied by several trace contaminants. Emphasis was placed on a study of the substrate specificity of this enzyme. 5-Fluorouracil, uracil, and orotate phosphoribosyltransferase activities purified in parallel during fractionation with ammonium sulfate and protamine sulfate and eluted together from columns of Sephadex tG-150 and DEAE-cellulose. The three phosphoribosyltransferase activities eluted from the Sephadex columns with an apparent molecular weight of 55,000 to 60,000. In spite of this coordinate fractionation, preferential losses of orotate activity were experienced during DEAE-cellulose chromatography. Orotate activity continued to behave in a unique manner under other conditions, such as during proteolytic digestion. In the latter case, however, all three activities responded in parallel when digestion took place in the presence of 5mM UMP. The following results provided additional evidence to support the view that all three phosphoribosyltransferase activities may be catalyzed by the same enzyme: (a) the apparent Km for 5-phosphoribosyl 1-pyrophosphate (PP-ribose-P) did not change significantly when enzyme activity was measured with either 5-fluorouracil, uracil, or orotate; (b) 5-fluorouracil and uracil were found to be mutually competitive inhibitors; the effect of 5-fluorouracil on orotate activity was likewise competitive in nature; (c) in the absence of UMP, orotate was a noncompetitive inhibitor of 5-fluorouracil and uracil activities, but in the presence of 5mM UMP it became a competitive inhibitor of both of these activities; (d) 5-fluorouracil and orotate activities co-sedimented in 5 to 20% sucrose gradients (uracil activity was not examined); and (e) a wide variety of normal mouse tissues displayed virtually the same 5-fluorouracil to uracil to orotate activity ratio as found in P1534J enzyme preparations. The apparent Km and Ki values reported in this study indicate that the preferred pyrimidine substrate is orotate. It seems likely, therefore, that this enzyme functions in vivo as an orotate phosphoribosyltransferase. Orotate phosphoribosyltransferase and orotidine 5'-monophosphate (OMP) decarboxylase activities (a) eluted together during gel filtration on Sephadex G-150, (b) co-sedimented in 5 to 20% sucrose gradients, (c) remained associated during fractionation with ammonium sulfate and protamine sulfate, and (d) separated into a phosphoribosyltransferase and decarboxylase component when enzyme preparations previously subjected to limited proteolysis by elastase were sedimented in sucrose gradients...  相似文献   

15.
We have previously described a mutant of Toxoplasma gondii that was 100-fold more resistant to 5-fluorodeoxyuridine, as measured by growth in human fibroblast cultures. Various pyrimidine salvage enzymes were measured in the wild type and the mutant parasites to determine the biochemical basis for resistance to fluorodeoxyuridine. Both the resistant mutant and the wild type parasite had little or no uridine kinase, an enzyme readily detectable in the human fibroblast host cells. Uridine and deoxyuridine phosphorylases were found in both parasites while human fibroblasts had much less of these enzymes. The critical difference between the mutant and the wild type parasites proved to be a 100-fold lower concentration of uracil phosphoribosyltransferase in the fluorodeoxyuridine-resistant mutant. A back mutant of the resistant strain, selected for its ability to use uracil, simultaneously regained uracil phosphoribosyltransferase and sensitivity to fluorodeoxyuridine. This enzymic evidence together with previously published data show that in wild type T. gondii, deoxyuridine is incorporated into nucleic acids through a phosphorolysis to produce uracil which is then converted to uridylic acid by uracil phosphoribosyltransferase.  相似文献   

16.
Pyrimidine metabolism by intracellular Chlamydia psittaci.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pyrimidine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined mutations affecting pyrimidine metabolism. C. psittaci AA Mp cannot synthesize pyrimidines de novo, as assessed by its inability to incorporate aspartic acid into nucleic acid pyrimidines. In addition, the parasite cannot take UTP, CTP, or dCTP from the host cell, nor can it salvage exogenously supplied uridine, cytidine, or deoxycytidine. The primary source of pyrimidine nucleotides is via the salvage of uracil by a uracil phosphoribosyltransferase. Uracil phosphoribosyltransferase activity was detected in crude extracts prepared from highly purified C. psittaci AA Mp reticulate bodies. The presence of CTP synthetase and ribonucleotide reductase is implicated from the incorporation of uracil into nucleic acid cytosine and deoxycytidine. Deoxyuridine was used by the parasite only after cleavage to uracil. C. psittaci AA Mp grew poorly in mutant host cell lines auxotrophic for thymidine. Furthermore, the parasite could not synthesize thymidine nucleotides de novo. C. psittaci AA Mp could take TTP directly from the host cell. In addition, the parasite could incorporate exogenous thymidine and thymine into DNA. Thymidine kinase activity and thymidine-cleaving activity were detected in C. psittaci AA Mp reticulate body extract. Thus, thymidine salvage was totally independent of other pyrimidine salvage.  相似文献   

17.
We developed a negative counterselection system for Pseudomonas putida based on uracil phosphoribosyltransferase (UPRTase) and sensitivity against the antimetabolite 5-fluorouracil (5-FU). We constructed a P. putida strain that is resistant to 5-FU and constructed vectors for the deletion of the surface adhesion protein gene, the flagellum biosynthesis operon, and two endonuclease genes. The genes were efficiently disrupted and left a markerless chromosomal in-frame deletion.  相似文献   

18.
Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases.  相似文献   

19.
The genes nikQ and nikR were identified by sequencing DNA of the nikkomycin biosynthetic gene cluster from Streptomyces tendae Tü901/8c. The nikQ gene encodes a P450 cytochrome, and the predicted NikR gene product shows 48-56% sequence identity with uracil phosphoribosyltransferases from eukaryotic organisms. The nikQ and nikR genes were inactivated separately by insertion of a kanamycin-resistance cassette. Inactivation of the nikQ gene abolished synthesis of nikkomycins containing 4-formyl-4-imidazolin-2-one as the base (nikkomycins X and I), whereas production of nikkomycins containing uracil (nikkomycins Z and J) was not affected. Nikkomycin X and I production could be restored by feeding 4-formyl-4-imidazolin-2-one to the nikQ mutants, indicating that NikQ is responsible for its formation from L-histidine. Disruption of the nikR gene resulted in formation of decreased amounts of nikkomycins X and I, whereas nikkomycins Z and J were synthesized at wild-type levels. A fluorouracil-resistant nikR mutant lacking uracil phosphoribosyltransferase (UPRTase) activity did not synthesize nikkomycins X and I and accumulated 4-formyl-4-imidazolin-2-one in its culture filtrate, whereas formation of nikkomycins Z and J was unimpaired. The mutant was complemented to nikkomycin X and I production by nikR expressed from the mel promoter of plasmid pIJ702. The nikR gene expressed in Escherichia coli led to the production of UPRTase activity. Our results indicate that NikR converts 4-formyl-4-imidazolin-2-one to yield 5'-phosphoribosyl-4-formyl-4-imidazolin-2-one, the precursor of nikkomycins containing this base.  相似文献   

20.
Uridine kinase (UK) and uracil phosphoribosyltransferase (UPRT) are enzymes catalyzing the formation of uridine 5′-monophosphate (UMP) from uridine and adenine 5′-triphosphate (ATP) and from uracil and phosphoribosyl-α-1-pyrophosphate (PRPP), respectively, in the pyrimidine salvage pathway. Here, we report the characterization and functional analysis of a gene AtUK/UPRT1 from Arabidopsis thaliana. Sequencing of an expressed sequence tag clone of this gene revealed that it contains a full-length open reading frame of 1461 nucleotides and encodes a protein with a molecular mass of approximately 53 kDa. The sequence analysis revealed that the N-terminal region of AtUK/UPRT1 contains a UK domain and the C-terminal region consists of a UPRT domain. Expression of AtUK/UPRT1 in upp and upp-udk mutants of Escherichia coli supplied with 5-fluorouracil (5-FU) and 5-fluorouridine (5-FD) led to growth inhibition. Identical results were obtained with 5-FD and 5-FU treatments when the UK and UPRT domains were separated by the introduction of translation initiation and stop codons prior to complementation into the upp-udk and upp mutants. These results suggest that the AtUK/UPRT1 product can use uracil and uridine as substrates for the production of UMP. We also investigated the function of AtUK/UPRT1 in an Arabidopsis mutant. The wild-type Arabidopsis plants showed drastic growth retardation when they were treated with 5-FU and 5-FD while the growth of atuk/uprt1 mutant plants was not significantly affected. These findings confirm that AtUK/UPRT1 has a dual role in coding for both uridine kinase and uracil phosphoribosyltransferase that form UMP through the pyrimidine salvage pathway in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号