首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
5.
6.
7.
Fibroblast growth factor (FGF) signaling is necessary for both proliferation and differentiation of lens cells. However, the molecular mechanisms by which FGFs exert their effects on the lens remain poorly understood. In this study, we show that FGF-2 repressed the expression of lens-specific genes at the proliferative phase in primary cultured lens cells. Using transfected cells, we also found that the activity of L-Maf, a lens differentiation factor, is repressed by FGF/ERK signaling. L-Maf is shown to be phosphorylated by ERK, and introduction of mutations into the ERK target sites on L-Maf promotes its stabilization. The stable L-Maf mutant protein promotes the differentiation of lens cells from neural retina cells. Taken together, these results indicate that FGF/ERK signaling negatively regulates the function of L-Maf in proliferative lens cells and that stabilization of the L-Maf protein is important for lens fiber differentiation.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Induction of a lens by the optic vesicle of the brain was the first demonstration of how tissue interactions could influence cell fate during development. However, recent work with amphibians has shown that the optic vesicle is not the primary inducer of lens formation. Rather, an earlier interaction between anterior neural plate and presumptive lens ectoderm appears to direct lens formation. One problem with many early experiments was the absence of an unambiguous assay for lens formation. Before being able to test whether the revised model of lens induction applies to chicken embryos, we examined the suitability of using delta-crystallin as a marker of lens formation. Although delta-crystallin is the major protein synthesized in the chick lens, one or both of the two delta-crystallin genes found in chickens is transcribed in many non-lens tissues as well. In studies of lens formation where appearance of the delta-crystallin protein is used as a positive assay, synthesis of delta-crystallin outside of the lens could make experiments difficult to interpret. Therefore, polyacrylamide gel electrophoresis, immunoblotting, and immunofluorescence were used to determine whether the delta-crystallin messenger RNA detected in non-lens tissues is translated into protein, as it is in the lens. On Coomassie-blue-stained gels of several tissues from stage-22 embryos, a prominent protein was observed that co-migrated with delta-crystallin. However, on immunoblots, none of the non-lens tissues tested contained detectable levels of delta-crystallin at this stage. By imunofluorescence, delta-crystallin was observed in Rathke's pouch and in a large area of oral ectoderm near Rathke's pouch, yet none of the cells in these non-lens tissues showed the typical elongated morphology of lens fiber cells. When presumptive lens ectoderm or other regions of ectoderm from stage-10 embryos were cultured and tested for lens differentiation, both cell elongation and delta-crystallin synthesis were observed, or neither were observed. The results suggest that delta-crystallin synthesis and cell elongation together serve as useful criteria for assessing a positive lens response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号