首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Various ultrastructural changes occur during follicular growth in the rat oocyte nucleolus. The nucleolus, which has a reticulated fibrillogranular structure at the primordial and primary follicle stages, becomes entirely compact and is made up of a conspicuous and homogeneous mass at the antral follicle stage. In order to define the nature and the functions of this homogeneous mass, cytochemical methods allowing detection of nucleic acids, proteins and lipids were performed at the light microscopic and ultrastructural levels. The results obtained suggest that this nucleolar mass is probably composed of acid proteins which are not silver stained. This proteinaceous mass could be a special kind of nucleolar secretion providing material for meiotic resumption in the oocyte. Cytochemical researches now in progress should supply new information concerning the exact nature and the role of the nucleolar compact mass, which is the essential nucleolar component at the antral follicle stage and which really plays a role in the nucleolus in the first stages of embryogenesis.  相似文献   

2.
Evolution of the rat oocyte nucleolus during follicular growth   总被引:1,自引:0,他引:1  
The ultrastructural evolution of the nucleolus was followed during follicular growth by means of a silver staining procedure. The oocyte nucleolus in the primordial and primary follicles consists of strands of dense fibrillar silver-stained component and aggregates of granules which are devoid of silver grains. Small fibrillar centres are also recognized and appear to have less silver stainability. At the secondary follicle stage, a new nucleolar component appears in the reticulated oocyte nucleolus. This component is devoid of silver grains. During follicle growth, at the antral follicle stage, this new component seems to fuse and the nucleolus becomes constituted of a compact homogeneous mass which exhibits a vacuole at the end of the oocyte maturation. The results obtained suggest that this nucleolar mass is essentially made of proteins and particularly of acidic proteins.  相似文献   

3.
4.
The ordered changes which occur in the structural organization of the mouse oocyte nucelus during the preparatory, the maturative and the preovulatory stages of antral follicle development, have been studied under both light and electron microscopy. All observations have been made on those antral follicles whose development is initiated on postnatal day 14 and completed by postnatal day 28 in prepubertal animals of the ICR albino mouse strain. The formed entities that can be recognized within the oocyte nucleus during that period are the condensing bivalents, the heterochromatic knobs, the nucleolus and the extranucleolar bodies. At the onset of antral follicle development, the highly unravelled dictyate bivalents are seen to take on a lampbrush-type configuration. Subsequent condensation of these lampbursh bivalents appears to be a very gradual and lengthy process that extends over almost the entire period of antral follicle development. The shortening and thickening of the lampbrush bivalents are best interpreted as resulting from the withdrawal of their lateral loop-like projections into the chromosome axes and from the focal aggregation of these axes into compact chromatin masses. Electron-opaque granules, which appear within the oocyte nucleus during the preparatory and maturative follicle stages, are seen to be intimately associated with these condensing bivalents. A number of Feulgen-positive heterochromatic knobs make their appearance in contact with certain bivalents during the preparatory follicle stage. These knobs are not reincorporated as such into the condensing chromatin masses and undergo disintegration and dissolution during the preovulatory follicle stage. The size, shape and ultrastructural features of the nucleolus remain unchanged thoughout the period of antral follicle development. Breakdown and dissolution of the nucleolar mass is a swift process that takes place only in the fully mature preovulatory follicle and more or less concomitantly with the dismantling of the nuclear envelope. The extranucleolar bodies increase noticeably in size during the preparatory and the maturative follicle stages; they shrink in size and undergo dissolution during the preovulatory stage of antral follicle development. An attempt is made to interpret these morphological changes in the light of current knowledge concerning the architectural and functional organization of the oocyte nucleus in general during meiotic prophase. The relevant observational evidence would be consistent with the view that, during antral follicle deveopment, the mouse oocyte nucleus is not, as too often assumed, in a period of arrested evolution; its formed components undergo structural, maturational and functional changes which are of significance not only for the resumption of the first meiotic prophase but also for the early development of the embryo.  相似文献   

5.
Chromosome despiralization and nucleolus vacuolization have been studied during the oocyte intensive growth. Oocyte and nucleolus growth has been found to stop at the secondary antral follicles with the diameter more than 1000 mkm. Chromosomal and nucleolar activity decreases at this stage. Chromosomes condense and concentrate around the nucleolus and chromatine mass (karyosphere) forms.  相似文献   

6.
7.
The organization of the nucleus in the oocytes from human antral follicles was examined at the electron microscopic level. At this time all the chromosomes are aggregated around an inactivated nucleolus forming a karyosphere 5-7 micron in diameter. The nucleolus bears no granular component and consists of densely packed delicate fibrillar material. The peripheral zone resembling a ring 0.5 micron thick is separated in the nucleolus. Nucleolus-like bodies (NLB), consisting of granules 20 nm in diameter embedded in finely fibrillar material, are constantly observed in contact with the chromatin. The eventually formed karyosphere is a complex of intimately interconnecting structures--the nucleolus, chromosomes and NLB. However, the chromatin surrounding the nucleolus does not form a continuous (compact) mass as it is observed at the light microscopic level. It is determined that the human karyosphere is formed during the preovulatory period when the connection between oocyte and follicular cells of cumulus oophorus is lost. The duration of karyosphere existence in the human oocytes, and relation of the karyosphere to the processes of antral follicle atresia are discussed.  相似文献   

8.
9.
10.
A central feature of oogenesis in the copepod crustacean, Acanthocyclops vernalis, is the development of a very large nucleolus in the oocytes. This nucleolus appears to be the only source of rRNA for the oocyte, as no helper cells are present. Previous work has suggested that ribosomal DNA sequences other than those found at the morphological nucleolar organizers are participating in the elaboration of this nucleolus. It has been hypothesized that chromatin diminution, which occurs during early embryonic development, may involve the loss of these rDNA sequences, which are needed only for the production of ribosomes during oogenesis. The present study examines the development of the large oocyte nucleolus at the electron microscopic level. Nucleologenesis in A. vernalis was found to proceed through 5 stages. During the first 3 stages nucleolar morphology resembled that described in other organisms. In the last 2, however, nucleolar morphology changed radically and the nucleolus was seen to increase greatly in size while breaking up into multiple subunits. The subunits initially resemble active nucleoli, although in the last stage, synthesis appears to stop, as the nucleolus was found to consist only of dense areas containing ribosome-like particles. These observations are consistent with the hypothesis that diminuted DNA contains ribosomal RNA genes.  相似文献   

11.
12.
13.
This paper deals with an electron microscope study of nucleolar ultrastructural modifications that occur in the oocytes of the lizard Podarcis sicula during ovarian follicle differentiation. In small diplotene oocytes around which a monolayered follicular epithelium forms, the nucleolus appears as a fibrillo-granular structure. Afterwards, simultaneously with the beginning of pyriform cell differentiation inside the granulosa, the nucleolus progressively condenses and breaks into fragments, forming dense spherical bodies. In larger follicles, with well differentiated pyriform cells, a typical nucleolus is no longer detectable in the oocyte nucleus. These ultrastructural modifications suggest a possible impairment of the oocyte nucleolus in ribosome organization. A possible involvement of pyriform cells in supplying ribosomes to the growing oocyte is discussed.  相似文献   

14.
南美白对虾卵子发生的组织学   总被引:4,自引:0,他引:4  
采用组织学方法研究了南美白对虾的卵子发生过程,根据卵细胞大小、核仁形态、卵黄粒的有无、皮质棒的出现以及卵母细胞与滤泡细胞的关系,将南美白对虾的卵子发生划分为卵原细胞、卵黄发生前的卵母细胞和卵黄发生的卵母细胞三个时期,并描述了各期卵细胞的形态特征。  相似文献   

15.
Confocal laser scanning microscopy of rat follicle development.   总被引:1,自引:0,他引:1  
This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pro, LysoTracker Red, hydroethidine, ethidium bromide, and 7-aminoactinomycin-d) were applied either to fresh tissue or to tissue that had been fixed with glutaraldehyde or paraformaldehyde. After fixation and staining, the tissue was dehydrated with MEOH and cleared with benzyl alcohol/benzyl aldehyde. CLSM was then used with the appropriate laser excitation, dichroics, and bandpass filters to acquire images of oocytes contained in follicles. Analysis of the data revealed three principal findings. First, a rapid increase in oocyte size occurred in the preantral stages of follicle development. In the antral stage of follicle development, there was a rapid increase in follicle size without any substantial increase in oocyte size. Second, accompanying these changes in oocyte and follicle growth was a differential staining pattern in which the nucleus stained more than the cytoplasm in a young follicle, but stained less than the cytoplasm as the follicle enlarged into the late antral stage. Lastly, using CLSM, atretic follicles showed increased LysoTracker Red staining in the granulosa region of the antral follicle, suggestive of cell death.  相似文献   

16.
Ovarian follicular development, follicle selection, and the process of ovulation remain poorly understood in most species. Throughout reproductive life, follicle fate is balanced between growth and apoptosis. These opposing forces are controlled by numerous endocrine, paracrine, and autocrine factors, including the ligands represented by the transforming growth factor beta (TGFbeta) superfamily. TGFbeta, activin, inhibin, bone morphometric protein (BMP), and growth differentiation factor 9 (GDF-9) are present in the ovary of many animals; however, no comprehensive analysis of the localization of each ligand or its receptors and intracellular signaling molecules during folliculogenesis has been done. The domestic cat is an ideal model for studying ovarian follicle dynamics due to an abundance of all follicle populations, including primordial stage, and the amount of readily available tissue following routine animal spaying. Additionally, knowledge of the factors involved in feline follicular development could make an important impact on in vitro maturation/in vitro fertilization (IVM/IVF) success for endangered feline species. Thus, the presence and position of TGFbeta superfamily members within the feline ovary have been evaluated in all stages of follicular development by immunolocalization. The cat inhibin alpha subunit protein is present in all follicle stages but increases in intensity within the mural granulosa cells in large antral follicles. The inhibin betaA and betaB subunit proteins, in addition to the activin type I (ActRIB) and activin type II receptor (ActRIIB), are produced in primordial and primary follicle granulosa cells. Additionally, inhibin betaA subunit is detected in the theca cells from secondary through large antral follicle size classes. GDF-9 is restricted to the oocyte of preantral and antral follicles, whereas the type II BMP receptor (BMP-RII) protein is predominantly localized to primordial- and primary-stage follicles. TGFbeta1, 2, and 3 ligand immunoreactivity is observed in both small and large follicles, whereas the TGFbeta type II receptor (TGFbeta RII) is detected in the oocyte and granulosa cells of antral follicles. The intracellular signaling proteins Smad2 and Smad4 are present in the granulosa cell cytoplasm of all follicle size classes. Smad3 is detected in the granulosa cell nucleus, the oocyte, and the theca cell nucleus of all follicle size classes. These data suggest that the complete activin signal transduction pathway is present in small follicles and that large follicles primarily produce the inhibins. Our data also suggest that TGFbeta ligands and receptors are colocalized to large antral follicles. Taken together, the ligands, receptors, and signaling proteins for the TGFbeta superfamily are present at distinct points throughout feline folliculogenesis, suggesting discrete roles for each of these ligands during follicle maturation.  相似文献   

17.
18.
19.
So far, standard follicle culture systems can produce blastocyst from less than 40% of the in vitro matured oocytes compared to over 70% in the in vivo counterpart. Because the capacity for embryonic development is strictly associated with the terminal stage of oocyte growth, the nuclear maturity status of the in vitro grown oocyte was the subject of this study. Mouse early preantral follicles (100-130 microm) and early antral follicles (170-200 microm) isolated enzymatically were cultured for 12 and 4 days, respectively, in a collagen-free dish. The serum-based media were supplemented with either 100 mIU/ml FSH (FSH only); 100 mIU/ml FSH + 10 mIU/ml LH (FSH-LH); 100 mIU/ml FSH + 1 mIU/ml GH (FSH-GH) or 100 mIU/ml FSH + 100 ng/ml activin A (FSH-AA). Follicle survival was highest in follicle stimulating hormone (FSH)-AA group in both cultured preantral (91.8%) and antral follicles (82.7%). Survival rates in the other groups ranged between 48% (FSH only, preantral follicle culture) and 78.7% (FSH only, antral follicle culture). Estradiol and progesterone were undetectable in medium lacking gonadotrophins while AA supplementation in synergy with FSH caused increased estradiol secretion and a simultaneously lowered progesterone secretion. Chromatin configuration of oocytes from surviving follicles at the end of culture revealed that there were twice more developmentally incompetent non-surrounded nucleolus (NSN) oocytes (>65%) than the competent surrounded nucleolus (SN) oocytes (<34%). We conclude that the present standard follicle culture system does not produce optimum proportion of developmentally competent oocytes.  相似文献   

20.
Nuclear transfer experiments in mammals have attempted to reprogram a donor nucleus to a state equivalent to the zygotic one. Reprogramming of the donor nucleus is, among other features, indicated by a synthesis of ribosomal RNA (rRNA). The initiation of rRNA synthesis is simultaneously reflected in nuclear morphology as a transformation of the nucleolus precursor body into a functional rRNA synthesising nucleolus with a characteristic ultrastructure. We examined nucleolar ultrastructure in bovine in vitro produced (control) embryos and in nuclear transfer embryos reconstructed from a MII phase (nonactivated) or S phase (activated) cytoplasts. Control embryos were fixed at the two-, four-, early eight- and late eight-cell stages; nuclear transfer embryos were fixed at 1 and 3 hr post fusion and at the two-, four-, and eight-cell stages. Control embryos possessed a nucleolar precursor body throughout all three cell cycles. In the eight-cell stage embryo, a primary vacuole appeared as an electron lucid area originating in the centre of the nucleolar precursor body. In nuclear transfer embryos reconstructed from nonactivated cytoplasts, the nuclear envelope was fragmented or completely broken down at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary vacuoles. A nucleolar precursor body typical for the two-cell stage control embryos was never observed. None of the reconstructed embryos of this group reached the eight-cell stage. Nuclear transfer embryos reconstructed from activated cytoplasts, in contrast, exhibited a complete nuclear envelope at all time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear transfer embryos, which was one cell cycle earlier than in control embryos. Only nuclear transfer embryos reconstructed from activated cytoplasts underwent complete remodelling of the nucleolus. The reorganisation of the donor nucleolar architecture into a functionally active nucleolus was observed as early as in the four-cell stage nuclear transfer embryo. These ultrastructural observations were correlated with our autoradiographic data on the initiation of RNA synthesis in nuclear transfer embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号