首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild-type populations of amphibians, unlike mammalians, appear to be resistant to spontaneous and chemically induced neoplasms. Few true cancers have been reported for non-isogeneic members of Xenopus laevis, despite their widespread use in laboratories around the world. Injection of even the most powerful direct mammalian oncogens e.g. N-methyl N-nitrosourea, that depleted specific populations of T lymphocytes, did not induce cancer. Phorbol diesters, e.g. PMA, are mitogens and apoptogens in both amphibian, and mammalian immunocytes. In mammalian cells, regulation of the cell cycle and of apoptosis are often intimately linked, however, a disjunction in time between early apoptosis and later cell cycling, has been observed with PMA-treated Xenopus splenocytes. Thus, a particular difference between amphibians and mammals may be the requirement to enter the cell cycle before a progression to death by apoptosis. This hypothesis was tested here using dual staining flow cytometry. Xenopus laevis splenocytes were cultured for 8, 24 and 48 hours with phorbol 12-myristate 13-acetate (PMA), previously shown to be mitogenic and apoptotic with mature Xenopus lymphocytes. The cells were stained with FITC-conjugated Annexin V or with FITC-labeled deoxyuridine triphosphates (FITC-dUTP) to assay for the apoptotic markers phosphotidylserine or DNA strand breaks respectively. Phycoerythrin (PE)-conjugated anti-human proliferating cell nuclear antigen (PE-PCNA) was used as a cell cycle marker that is present during the entire cell cycle. Propidium iodide (PI) binds DNA and was used to assay for late stage apoptosis, as well as to assess DNA content.Significantly higher levels of apoptosis develop rapidly in PMA-exposed splenocytes and are maintained at 24 hours, declining by 48 hours. Cells expressing PCNA or incorporating PI in excess of the normal genomic level were found by 48 hours following PMA exposure. The absence of any significant rise in a small (<5%) dual staining cell population indicates that the apoptotic cell population remained distinct from cells already in the cell cycle from the onset of PMA exposure. Thus, Xenopus splenocytes respond differentially to PMA. Those that undergo apoptosis rapidly were quiescent, non-cycling small lymphocytes. Moreover, the cells that eventually begin division, following PMA exposure, were unaffected by the early apoptois and do not themselves die while in the cell cycle. The rapid apoptotic response of X. laevis cells to PMA may confer a natural cancer resistance in this species, as cells that fail to enter the cell cycle after exposure to cancer promoting reagents cannot express genetic destabilization that might have led to transformation.  相似文献   

2.
During amphibian metamorphosis the digestive tract is extensively remodeled under the control of epithelial-connective tissue interactions. At the cellular level, larval epithelial cells undergo apoptosis, while a small number of stem cells appear, actively proliferate, and then differentiate to form adult epithelium that is analogous to its mammalian counterpart. Therefore the amphibian digestive tract is a unique model system for the study of postembryonic organ regeneration. As amphibian intestinal remodeling can be triggered by thyroid hormone (TH), the molecular mechanisms involved can be studied from the perspective of examining the expression cascade of TH response genes. A number of these genes have been isolated from the intestine of Xenopus laevis. Recent progress in the functional analysis of this cascade has shed light on key molecules in intestinal remodeling such as matrix metalloproteinase-11, sonic hedgehog, and bone morphogenetic protein-4. These genes are also thought to play key roles in organogenesis and/or homeostasis in both chick and mammalian digestive tract, suggesting the existence of conserved mechanisms underlying such events in terrestrial vertebrates. In this article, we review our recent findings in this field, focusing on the development of adult epithelium in the X. laevis intestine.  相似文献   

3.

Background

The thyroid hormone (T3)-induced formation of adult intestine during amphibian metamorphosis resembles the maturation of the mammalian intestine during postembryonic development, the period around birth when plasma T3 level peaks. This process involves de novo formation of adult intestinal stem cells as well as the removal of the larval epithelial cells through apoptosis. Earlier studies have revealed a number of cytological and molecular markers for the epithelial cells undergoing different changes during metamorphosis. However, the lack of established double labeling has made it difficult to ascertain the identities of the metamorphosing epithelial cells.

Results

Here, we carried out different double-staining with a number of cytological and molecular markers during T3-induced and natural metamorphosis in Xenopus laevis. Our studies demonstrated conclusively that the clusters of proliferating cells in the epithelium at the climax of metamorphosis are undifferentiated epithelial cells and express the well-known adult intestinal stem cell marker gene Lgr5. We further show that the adult stem cells and apoptotic larval epithelial cells are distinct epithelial cells during metamorphosis.

Conclusions

Our findings suggest that morphologically identical larval epithelial cells choose two alternative paths: programmed cell death or dedifferentiation to form adult stem cells, in response to T3 during metamorphosis with apoptosis occurring prior to the formation of the proliferating adult stem cell clusters (islets).
  相似文献   

4.
The African clawed frog Xenopus laevis is by far the most widely used amphibian species in laboratories. In the wild, X. laevis is an asymptomatic carrier of an emerging infectious disease called chytridiomycosis. The vector is the chytrid fungus Batrachochytrium dendrobatidis (Bd), which has devastating effects on wild amphibian populations around the world. The impact of Bd on the metabolism of X. laevis has not been comprehended yet. However, even if asymptomatic, an infection is likely to affect the individual's physiology, immunology, development, reproduction and overall response to stress from a purely medical point of view, which will introduce noise and therefore increase variance within experimental groups of X. laevis. This could have implications on the scientific results from studies using this species. Here, we review the current knowledge on treatments of infected amphibians and propose a hygiene protocol adapted to laboratory populations and amphibian husbandry. Following the presented sanitation guidelines could further prevent the spread of Bd and probably of other amphibian pathogens. The sanitation guidelines will help to reduce the impact of amphibian husbandry on natural populations and must be considered a crucial contribution to amphibian conservation, as today 32% of all amphibians are considered threatened.  相似文献   

5.
6.
The adult mammalian intestine has long been used as a model to study adult stem cell function and tissue renewal as the intestinal epithelium is constantly undergoing self-renewal throughout adult life. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells located in the crypt. The development of this self-renewal system is, however, poorly understood. A number of studies suggest that the formation/maturation of the adult intestine is conserved in vertebrates and depends on endogenous thyroid hormone (T3). In amphibians such as Xenopus laevis, the process takes place during metamorphosis, which is totally dependent upon T3 and resembles postembryonic development in mammals when T3 levels are also high. During metamorphosis, the larval epithelial cells in the tadpole intestine undergo apoptosis and concurrently, adult epithelial stem/progenitor cells are formed de novo, which subsequently lead to the formation of a trough-crest axis of the epithelial fold in the frog, resembling the crypt-villus axis in the adult mammalian intestine. Here we will review some recent molecular and genetic studies that support the conservation of the development of the adult intestinal stem cells in vertebrates. We will discuss the mechanisms by which T3 regulates this process via its nuclear receptors.  相似文献   

7.
In organisms with complex life cycles, such as amphibians, selection is thought to have minimized the duration of metamorphosis, because this is the stage at which predation risk is presumed to be highest. Consequently, metamorphic duration is often assumed to show little if any environmentally induced plasticity, because the elevation in the extrinsic mortality risk associated with prolonging metamorphosis is presumed to have selected for a duration as short as is compatible with normal development. We examined the extent to which metamorphic duration in the anuran amphibian Xenopus laevis was sensitive to environmental temperature. Metamorphic duration was influenced by body size, but independent of this effect, it was strongly influenced by environmental temperature: the duration at 18 °C was more than double that at 24 and 30 °C. We also compared the vulnerability of larval, metamorphosing and post metamorphic Xenopus to predators by measuring their burst swimming speeds. Burst swim speed increased through development and while we found no evidence that it was reduced during metamorphosis, it did increase sharply on completion of metamorphosis. We therefore found no evidence of a substantial increase in vulnerability to predators during metamorphosis compared with larval stages, and hence the slowing of metamorphosis in response to temperature may not be as costly as has been assumed.  相似文献   

8.
We have identified one of the genes that are up-regulated by thyroid hormone (TH) in Xenopus laevis small intestine as the Xenopus homolog of bone morphogenetic protein-4 (BMP-4). To clarify possible roles of BMP-4 in intestinal remodeling during metamorphosis, we have examined its expression in X. laevis intestine by using in situ hybridization and organ culture techniques. At the beginning of metamorphic climax, BMP-4 mRNA first becomes detectable in the connective tissue, concurrently with the appearance of adult epithelial primordia. Subsequently, when the adult epithelial primordia are actively proliferating, BMP-4 mRNA becomes more abundant only in the connective tissue with a gradient toward the epithelium. Thereafter, as the adult primordia differentiate, the level of BMP-4 mRNA gradually decreases. Thus, BMP-4 expression correlates well with cell proliferation and/or initial differentiation of the adult epithelium, but not with apoptosis of the larval epithelium. Furthermore, the present culture study indicates that (1) TH-induced expression of BMP-4 mRNA is higher in the anterior part of the intestine than in the posterior part, which agrees with the better development of the adult epithelium in the more anterior part, and that (2) the expression of BMP-4 mRNA is up-regulated by TH in the presence of epithelium, but not in its absence. Therefore, BMP-4, which is indirectly induced by TH through some epithelial factor(s), probably plays important roles in adult epithelial development during amphibian intestinal remodeling.  相似文献   

9.
刘影  刘韩菡  李胜 《昆虫知识》2009,46(5):673-677
程序化细胞死亡(programmed cell death,PCD)分为I型PCD细胞凋亡(apoptosis)和II型PCD细胞自噬(autophagy)。果蝇等完全变态昆虫有2种类型的器官:即细胞内分裂器官(如脂肪体、表皮、唾液腺、中肠、马氏管等)和有丝分裂器官(复眼、翅膀、足、神经系统等)。在昆虫变态过程中,细胞内分裂器官进行器官重建,幼虫器官大量发生细胞凋亡和细胞自噬到最后完全消亡,同时成虫器官由干细胞从新生成;而有丝分裂器官则由幼虫器官直接发育为成虫器官。在果蝇等昆虫的变态过程中,细胞凋亡和细胞自噬在幼虫器官的死亡和成虫器官的生成中发挥了非常重要的作用。文章简要介绍细胞凋亡和细胞自噬在果蝇变态过程中的生理功能和分子调控机制。  相似文献   

10.
During amphibian metamorphosis, the larval tissues/organs rapidly degenerate to adapt from the aquatic to the terrestrial life. At the cellular level, a large quantity of apoptosis occurs in a spatiotemporally-regulated fashion in different organs to ensure timely removal of larval organs/tissues and the development of adult ones for the survival of the individuals. Thus, amphibian metamorphosis provides us a good opportunity to understand the mechanisms regulating apoptosis. To investigate this process at the molecular level, a number of thyroid hormone (TH) response genes have been isolated from several organs of Xenopus laevis tadpoles and their expression and functional analyses are now in progress using modern molecular and genetic technologies. In this review, we will first summarize when and where apoptosis occurs in typical larva-specific and larval-to-adult remodeling amphibian organs to highlight that the timing of apoptosis is different in different tissues/organs, even though all are induced by the same circulating TH. Next, to discuss how TH spatiotemporally regulates the apoptosis, we will focus on apoptosis of the X. laevis small intestine, one of the best characterized remodeling organs. Functional studies of TH response genes using transgenic frogs and culture techniques have shown that apoptosis of larval epithelial cells can be induced by TH either cell-autonomously or indirectly through interactions with extracellular matrix (ECM) components of the underlying basal lamina. Here, we propose that multiple intra- and extracellular apoptotic pathways are coordinately controlled by TH to ensure massive but well-organized apoptosis, which is essential for the proper progression of amphibian metamorphosis.  相似文献   

11.
A pituitary hormone, prolactin (PRL) shows various effects on cellular metabolism in amphibians, such as stimulation of larval tissue growth and inhibition of metamorphic changes. All these effects are mediated by its cell surface receptor. However, lack of information on PRL receptor (PRL-R) gene expression has made the physiological importance of the PRL/PRL-R system obscure in amphibian metamorphosis. Hence, a Xenopus PRL-R cDNA was cloned, its structure was characterized, and specific binding of PRL to Xenopus PRL-R expressed in COS-7 cells was confirmed. In adult tissues, high level expression was found in the lung, heart, brain, thymus and skin, and low level in the oviduct, kidney and spinal cord. The developmental expression pattern showed that PRL-R messenger ribonucleic acid (mRNA) was expressed in the brain and tail from premetamorphosis and the level increased toward late metamorphosis, suggesting that PRL may inhibit the metamorphic changes in those organs. The level of brain PRL-R mRNA reached a peak just at the start of the metamorphic climax stages and then decreased, whereas in the tail, mRNA expression peaked at late metamorphosis. In the kidney, mRNA expression increased and reached a maximum level at the end of metamorphosis. The results obtained were discussed in relation to metamorphosis.  相似文献   

12.
13.
Matrix metalloproteinases (MMPs) participate in extracellular matrix remodeling and degradation and have been implicated in playing important roles during organ development and pathological processes. Although it has been hypothesized for > 30 years that collagenase activities are responsible for collagen degradation during tadpole tail resorption, none of the previously cloned amphibian MMPs have been biochemically demonstrated to be collagenases. Here, we report a novel matrix metalloproteinase gene from metamorphosing Xenopus laevis tadpoles. In vitro biochemical studies demonstrate that this Xenopus enzyme is an interstitial collagenase and has an essentially identical enzymatic activity toward a collagen substrate as the human interstitial collagenase. Sequence comparison of this enzyme to other known MMPs suggests that the Xenopus collagenase is not a homologue of any known collagenases but instead represents a novel collagenase, Xenopus collagenase-4 (xCol4, MMP-18). Interestingly, during development, xCol4 is highly expressed only transiently in whole animals, at approximately the time when tadpole feeding begins, suggesting a role during the maturation of the digestive tract. More importantly, during metamorphosis, xCol4 is regulated in a tissue-dependent manner. High levels of its mRNA are present as the tadpole tail resorbs. Similarly, its expression is elevated during hindlimb morphogenesis and intestinal remodeling. In addition, when premetamorphic tadpoles are treated with thyroid hormone, the causative agent of metamorphosis, xCol4 expression is induced in the tail. These results suggest that xCol4 may facilitate larval tissue degeneration and adult organogenesis during amphibian metamorphosis.  相似文献   

14.
The matrix metalloproteinase (MMP) stromelysin-3 (ST3) was originally discovered as a gene whose expression was associated with human breast cancer carcinomas and with apoptosis during organogenesis and tissue remodeling. It has been shown previously, in our studies as well as those by others, that ST3 mRNA is highly upregulated during apoptotic tissue remodeling during Xenopus laevis metamorphosis. Using a function-blocking antibody against the catalytic domain of Xenopus ST3, we demonstrate here that ST3 protein is specifically expressed in the cells adjacent to the remodeling extracellular matrix (ECM) that lies beneath the apoptotic larval intestinal epithelium in X. laevis in vivo, and during thyroid hormone-induced intestinal remodeling in organ cultures. More importantly, addition of this antibody, but not the preimmune antiserum or unrelated antibodies, to the medium of intestinal organ cultures leads to an inhibition of thyroid hormone-induced ECM remodeling, apoptosis of the larval epithelium, and the invasion of the adult intestinal primodia into the connective tissue, a process critical for adult epithelial morphogenesis. On the other hand, the antibody has little effect on adult epithelial cell proliferation. Furthermore, a known MMP inhibitor can also inhibit epithelial transformation in vitro. These results indicate that ST3 is required for cell fate determination and cell migration during morphogenesis, most likely through ECM remodeling.  相似文献   

15.
T cell functions are impaired during defined developmental stages of amphibian metamorphosis (Marx et al., 1987). Here we show, using a fluorescent anti-human IL-2 receptor antibody and flow cytometry, that during these stages, the splenocytes of Xenopus laevis, the South African clawed toad, have a progressively diminished capacity to express IL-2 receptors (IL-2R), after in vitro lectin stimulation. Preincubation with human rIL-2 specifically blocks binding of the anti-IL-2R antibody. Separation of an endogenous ligand bound to the IL-2R leads to a substantial increase in available epitope recognized by the anti-IL-2R antibody when pre- and postmetamorphic splenocytes are employed, but not when splenocytes of the prometamorphic stages are treated similarly. Thus, the cells from the prometamorphic stages are not producing significant quantities of the ligand. Finally, we demonstrate that human rIL-2 is not by itself mitogenic in the toad, but it can act as a co-stimulator of antigen-induced mitogenesis. Thus, an absence of an endogenous ligand (autologous IL-2?), coupled with a reduced capacity to express IL-2 receptors may be responsible for impaired T cell clonal expansion in metamorphosing Xenopus. Inhibition of T cell functions during this period is vital, since adult cells forming within the larval body bear surface proteins not found on larval cells (Flajnik et al., 1986).  相似文献   

16.
In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neural retina (NR) and lens regenerate following the surgical removal of these tissues in the anuran amphibian, Xenopus laevis, even in the mature animal. The NR regenerated both from the retinal pigment epithelial (RPE) cells by transdifferentiation and from the stem cells in the ciliary marginal zone (CMZ) by differentiation. In the early stage of NR regeneration (5-10 days post operation), RPE cells appeared to delaminate from the RPE layer and adhere to the remaining retinal vascular membrane. Thereafter, they underwent transdifferentiation to regenerate the NR layer. An in vitro culture study also revealed that RPE cells differentiated into neurons and that this was accelerated by the presence of FGF-2 and IGF-1. The source of the regenerating lens appeared to be remaining lens epithelium, suggesting that this is a kind of repair process rather than regeneration. Thus, we show for the first time that anuran amphibians retain the capacity for retinal regeneration after metamorphosis, similarly to urodeles, but that the mode of regeneration differs between the two orders. Our study provides a new tool for the molecular analysis of regulatory mechanisms involved in retinal and lens regeneration by providing an alternative animal model to the newt, the only other experimental model.  相似文献   

17.
Synthesis of the egg yolk precursor protein, vitellogenin, can be induced in adult, but not in larval, amphibian hepatocytes by estrogen treatment. The transition process for this inducibility of hepatocytes during development of Xenopus laevis was examined, using primary cultures of hepatocytes. This was found to occur at about the metamorphic climax of stage 62, although the level of vitellogenin production was very limited at this stage. This low level seemed due neither to insufficient estradiol-17 beta nor to high estrogen-degrading activity. The level of synthesis gradually increased following metamorphosis. Immunohistochemical analysis showed that fewer than 5% of the hepatocytes at stage 62 could be stained with antivitellogenin antibody and that the stained cell fraction subsequently increased gradually for several months after metamorphosis. These findings indicate that adult-type cells capable of synthesizing vitellogenin appear at metamorphosis and then expand their population in the liver during postmetamorphic maturation.  相似文献   

18.
To clarify connective-tissue-specific genes involved in adult epithelial development during amphibian intestinal remodeling, we have isolated 16 cDNA clones derived from the anterior part of Xenopus laevis intestine cultured in vitro by using subtractive suppression hybridization. Among four genes identified, the expression of Xtld, a Xenopus homolog of Drosophila Tolloid closely related to bone morphogenic protein-1 (BMP-1), was most remarkably up-regulated during metamorphosis. To further explore the roles of Xtld in intestinal remodeling, we examined its developmental expression in the X. laevis intestine by in situ hybridization and northern blot analysis. Xtld mRNA first became detectable in the connective tissue just before the appearance of adult epithelial primordia. Subsequently, the level of Xtld mRNA reached a high in the connective tissue, concomitantly with adult epithelial development along the anteroposterior axis of the intestine. Thereafter, towards the completion of metamorphosis, the expression of Xtld mRNA was down-regulated. Thus, the expression profile of Xtld mRNA spatiotemporally correlates well with adult epithelial development in vivo. Furthermore, the present culture study has shown that thyroid hormone (TH) up-regulates the expression of Xtld mRNA organ-autonomously in the anterior part of the intestine, but not in its posterior part, and that TH up-regulation of Xtld expression is not mediated by the epithelium. These results suggest that TH directly up-regulates Xtld expression in the connective tissue along the anteroposterior axis, which in turn plays important roles in adult epithelial development during amphibian intestinal remodeling.  相似文献   

19.
20.
During amphibian metamorphosis, the animal body dramatically remodels to adapt from the aquatic to the terrestrial life. Cell death of larval organs/tissues occurs massively in balance with proliferation of adult organs/tissues, to ensure survival of the individuals. Thus, amphibian metamorphosis provides a unique and valuable opportunity to study regulatory mechanisms of cell death. The advantage of this animal model is the absolute dependence of amphibian metamorphosis on thyroid hormone (TH). Since the 1990s, a number of TH response genes have been identified in several organs of Xenopus laevis tadpoles such as the tail and the intestine by subtractive hybridization and more recently by cDNA microarrays. Their expression and functional analyses, which are still ongoing, have shed light on molecular mechanisms of TH‐induced cell death during amphibian metamorphosis. In this review, I survey the recent progress of research in this field, focusing on the X. laevis intestine where apoptotic process is well characterized at the cellular level and can be easily manipulated in vitro. A growing body of evidence indicates that apoptosis during the intestinal remodeling occurs not only via a cell‐autonomous pathway but also via cell–cell and/or cell–extracellular matrix (ECM) interactions. Especially, stromelysin‐3, a matrix metalloproteinase, has been shown to alter cell–ECM interactions by cleaving a laminin receptor and induce apoptosis in the larval intestinal epithelium. Here, I emphasize the importance of TH‐induced multiple apoptotic pathways for massive and well‐organized apoptosis in the amphibian organs and discuss their conservation in the mammalian organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号