首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anatomical observations of leaves infected by Taphrina deformans were studied in tolerant peach trees (TPT) and in very susceptible (VSPT) ones. Leaves from the first sampling (2nd April) showed hyphae penetrating through the stomata or into the cuticle of the host tissue; anatomical structures of leaf sections were similar for both TPT and VSPT. The ultrastructure of the leaves of TPT showed seemingly normal mesophyll cells. In contrast, mesophyll cells of the VSPT showed important signs of degradation. Cells were organelle‐free and the middle lamella was expanded and invaded by hyphae of T. deformans. In some samples, the leaves of TPT showed deformed epidermal cells, loss of some spongy cells and increase of the intercellular spaces and division of the palisade cells. The pathogen proliferation in the leaves of the VSPT was considerably superior. In this case, stimulation of cell division occurred in the abaxial epidermis. Cells showed periclinal and oblique divisions, with an increased number of plasmodesmata; palisade or spongy cells were not differentiable. Leaves from TPT collected on 26th April showed hyphae with a non‐cylindrical section and with a squashed aspect. The hyphae were very evident in the intercellular spaces, showing abundant endoplasmic reticulum of rough type (RER) in the cytoplasm. On the other hand, epidermis of the leaves of the VSPT had numerous hyphae under the cuticle, which were growing in a thick pectin matrix. Leaves from TPT and VSPT collected on 6th May showed relevant differences. The leaves of TPT had a palisade mesophyll with fewer cells but with active chloroplasts. In contrast, the leaves from VSPT showed empty mesophyll cells, the cytoplasm was collapsed and the adaxial epidermis was covered with the fungus fructification. The observed anatomical and ultrastructural differences of leaves from TPT and VSPT confirm a different behaviour in plant‐host reaction at early stages of infection.  相似文献   

2.
Curled peach leaves, naturally infected by Taphrina deformans, were studied by scanning and transmission electron microscopy, combined with cytochemistry, in order to observe the modifications induced by the pathogen in the host cells, particularly in the wall-to-wall boundary zone. It was found that the asci, which are formed only on the upper leaf surface, perforate the cuticle by lysis and not only by mechanical action; hyphae growing in the intercellular spaces cause a partial dissolution of the leaf cell walls by secretion of polysaccharide-degrading enzymes including cellulase. Alteration of the host plasma membrane often accompanies cell wall degradation. It was also found that in the curled areas the palisade layer is replaced by a less differentiated tissue, while the spongy parenchyma is always well recognizable, notwithstanding cellular alteration.  相似文献   

3.
A fungus parasitic on a fern, Dennstaedtia wilfordii (Dennstaedtiaceae), was found at the foothill of Mt. Fuji, Yamanashi Prefecture, Japan. Its hyphae spread within host mesophyll cells and through intercellular spaces, forming coiled haustoria in the epidermal and mesophyll cells. The hyphae emerged either through stomata or by disrupting epidermal cell junctions. The hyphae spreading over the abaxial leaf surface generated one-septate, thin-walled basidia. All the morphological features observed were characteristic of the genus Herpobasidium. The species identification of the fungus as H. filicinum by morphology was supported by molecular phylogenetic analyses of the D1/D2 region of the large subunit rRNA gene.  相似文献   

4.
Soylu S 《Mycopathologia》2004,158(4):457-464
In this study transmission electron microscopy (TEM) was used to examine details of the host–pathogen interface in Arabidopsis thaliana cotyledons infected by Albugo candida, causal agent of white blister. After successful entry through stomatal pores, the pathogen developed a substomatal vesicle and subsequently produced intercellular hyphae. TEM observations revealed that coenocytic intercellular hyphae ramified and spread intercellularly throughout the host tissue forming several haustoria in host mesophyll cells. Intracellular haustoria were spherical and 4.5 μm in diameter. Each haustorium was connected to intercellular hyphae by a narrow, slender haustorium neck. The cytoplasm of the haustorium included the organelles characteristic of the pathogen. No obvious response was observed in host cells following formation of haustoria. Most of the mesophyll cells contained normal haustoria and the host cytoplasm displayed a high degree of structural integrity. Absence of host cell wall alteration and cell death in penetrated host cells suggest that the pathogen exerts considerable control over basic cellular processes and in this respect, response to this biotrophic Oomycete differs considerably from responses to other pathogens such as necrotrophs. Modification of the host plasma membrane (PM) along the cell wall and around the haustoria, was detected by applying the periodic acid-chromic acid-phosphotungstic acid (PACP) staining technique. After staining with PACP, the host PM was found to be intensely electron dense where it was adjacent to the host cell wall and the distal region of the haustorial neck. By contrast, the extrahaustorial membrane, where the host PM surrounded the haustorium, was consistently very lightly stained.  相似文献   

5.
Ustilago esculenta is a biotrophic smut fungus that parasitizes Zizania latifolia, an edible aquatic vegetable of the southern China region. Infection results in swelling of the upper parts of the Z. latifolia culm which are called jiaobai and have a unique flavor and delicacy and are popular among Chinese. The infection process of Z. latifolia by U. esculenta was investigated with light and electron microscopy. Distribution of hyphae was uneven in plants; hyphae were mainly present in the swollen upper parts (jiaobai), the nodal regions of mature culms and old rhizomes and buds or shoots. Hyphae were rare in the internodes of mature culms and were fewer in the internodes of old rhizomes. All new buds produced on the nodes of culms and rhizomes were infected by hyphae in November before and in March after overwintering. The hyphae grew into the buds from the parent nodes via intervascular tissues only or via parenchyma tissues and vascular bundles. Hyphae extended within and between the host cells and frequently formed hyphal aggregations or clusters, not only in the mature tissues but also in developing tissues. The typical interface between the fungal hyphal wall and invaginated host plasma membrane comprised a sheath. The sheath surrounding a hyphae comprised an outer electron-opaque matrix and an inner electron-dense layer. The electron-opaque matrix layers were thicker in jiaobai tissues, ranging from 0.28 to 0.85 μm. The electron-dense hyphal coatings were more conspicuous in the young buds or shoots and mature culms than in the jiaobai. The intercellular hyphae caused large cavity formation between the cells or rupture of host cell walls, for gaining entry into host cells. The broken host cell wall fused with the electron-opaque matrix of the hyphal sheath as an interactive interface. The teliospore wall and wall ornamentation development was the same in postmature jiaobai tissues with sporadic sori and in the huijiao (jiaobai tissues containing the massive sori), but a sheath enveloping the teliospore was more transparent in the process of teliospore development in the jiaobai than in the huijiao.  相似文献   

6.
Wu L  Guo S 《Mycorrhiza》2008,18(2):79-85
A dark-septate endophytic (DSE) fungus EF-M was isolated from the roots of an alpine plant Saussurea involucrata Kar. et Kir. ex Maxim. The fungus was identified by sequencing the PCR-amplified rDNA 5.8S gene and ITS regions. The sequence was compared with similar sequences in the GenBank, and results showed that EF-M was congeneric to Leptodontidium. Resynthesis study was conducted to clarify the relationship between the root endophyte EF-M and the host plant S. involucrata using the material grown in sterile culture bottle. In roots recovered 6 weeks after inoculation, epidermal cells were colonized by intercellular and intracellular hyphae and “microsclerotia” formed within individual cells in the epidermis layers. However, hyphae did not invade the cortex and the stele. There were no profound effects of endophyte EF-M on plant root development, but significant differences were detected in plant height and shoot dry weight between the treatments. The present study is the first report hitherto on DSE fungi in S. involucrata.  相似文献   

7.
Interactions between roots of Douglas-fir (DF; Pseudotsuga menziesii) seedlings and the laminated root rot fungus Phellinus sulphurascens were investigated using scanning and transmission electron microscopy and immunogold labelling techniques. Scanning electron micrographs revealed that P. sulphurascens hyphae colonize root surfaces and initiate the penetration of root epidermal tissues by developing appressoria within 2 d postinoculation (dpi). During early colonization, intra- and intercellular fungal hyphae were detected. They efficiently disintegrate cellular components of the host including cell walls and membranes. P. sulphurascens hyphae penetrate host cell walls by forming narrow hyphal tips and a variety of haustoria-like structures which may play important roles in pathogenic interactions. Ovomucoid–WGA (wheat germ agglutinin) conjugated gold particles (10 nm) confirmed the occurrence and location of P. sulphurascens hyphae, while four specific host pathogenesis-related (PR) protein antibodies conjugated with protein A–gold complex (20 nm) showed the localization and abundance of these PR proteins in infected root tissues. A thaumatin-like protein and an endochitinase-like protein were both strongly evident and localized in host cell membranes. A DF-PR10 protein was localized in the cell walls and cytoplasm of host cells while an antimicrobial peptide occurred in host cell walls. A close association of some PR proteins with P. sulphurascens hyphae suggests their potential antifungal activities in DF roots.  相似文献   

8.
Uchida W  Matsunaga S  Kawano S 《Protoplasma》2005,226(3-4):207-216
Summary. The development of male organs is induced in female flowers of the dioecious plant Silene latifolia by infection with the fungus Microbotryum violaceum. Stamens in a healthy female flower grow only to stage 6, whereas those in an infected female flower develop to the mature stage (stage 12), at which the stamens are filled with fungal teliospores instead of pollen grains. To investigate these host–parasite interactions, young floral buds and fungus-induced anthers of infected female flowers were examined by electron microscopy following fixation by a high-pressure freezing method. Using this approach, we found that parasitic hyphae of this fungus contain several extracellular vesicles and have a consistent appearance up to stage 8. At that stage, parasitic hyphae are observed adjacent to dying sporogenous cells in the infected female anther. At stage 9, an increased number of dead and dying sporogenous cells is observed, among which the sporogenous hyphae of the fungus develop and form initial teliospores. Several types of electron-dense material are present in proximity to some fungi at this stage. The initial teliospores contain two types of vacuoles, and the fungus cell wall contains abundant carbohydrate, as revealed by silver protein staining. The sporogenous cell is probably sensitive to infection by the fungus, resulting in disruption. In addition, the fungus accelerates cell death in the anther and utilizes constituents of the dead host cell to form the mature teliospore. Correspondence and reprints (present address): Molecular Membrane Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.  相似文献   

9.
Microorganisms including bacteria, actinomycetes and fungi were recovered from the leaves of Withania somnifera, which were collected from two altitudinal ranges (0–300 m and 1700–2000 m) in the Asir region, Saudi Arabia. Types and numbers of microorganisms varied according to the altitude and the month of collection. The number of microorganisms was higher on old leaves than that on young ones in most cases. Low altitude exhibited more microorganisms than high altitude. The relationship between meteorological factors and type and number of the recovered microorganisms is discussed. Inoculation of detached healthy leaves of Withania by all recovered fungal species revealed only Alternaria solani as a pathogen of this plant. To confirm pathogenicity, scanning and transmission electron microscopic examination revealed the colonization of this pathogen inside the leaf tissue. Penetration of Withania leaves by the fungus occurred only through stomata, and the invading hyphae were located in the intercellular spaces of leaf tissues. Ultrastructural changes noted in infected cells included changes in chloroplasts and the invagination of the host plasma membrane.  相似文献   

10.
Summary Electron microscopy of protocorms of Dactylorhiza purpurella infected with a symbiotic Rhizoctonia sp. showed that the intracellular hyphae examined did not penetrate the plasmalemma of the host cell. Walls of hyphae within cells bore many hemispherical protuberances over which the host plasmalemma was closely pressed. we estimate that these protuberances would increase the area of contact between hyphae and host plasmalemma by about 15%. They were not found on hyphae growing on agar. Except for these protuberances, and some vesicles or tubules which invaginated the fungus plasmalemma, no other structures were seen which could be suggested to be adaptations to transport across the living fungus-host interface.  相似文献   

11.
The distribution of extracellular 1,3‐β‐glucanase secreted by Gaeumannomyces graminis var. tritici (Ggt) was investigated in situ in inoculated wheat roots by immunogold labelling and transmission electron microscopy. Antiserum was prepared by subcutaneously injecting rabbits with purified 1,3‐β‐glucanase secreted by the pathogenic fungus. A specific antibody of 1,3‐β‐glucanase, anti‐GluGgt, was purified and characterized. Double immunodiffusion tests revealed that the antiserum was specific for 1,3‐β‐glucanase of Ggt, but not for 1,3‐β‐glucanase from wheat plants. Native polyacrylamide gel electrophoresis of the purified and crude enzyme extract and immunoblotting showed that the antibody was monospecific for 1,3‐β‐glucanase in fungal extracellular protein populations. After incubation of ultrathin sections of pathogen‐infected wheat roots with anti‐1,3‐β‐glucanase antibody and the secondary antibody, deposition of gold particles occurred over hyphal cells and the host tissue. Hyphal cell walls and septa as well as membranous structures showed regular labelling with gold particles, while few gold particles were detected over the cytoplasm and other organelles such as mitochondria and vacuoles. In host tissues, cell walls in contact with the hyphae usually exhibited a few gold particles, whereas host cytoplasm and cell walls distant from the hyphae were free of labelling. Furthermore, over lignitubers in the infected host cells labelling with gold particles was detected. No gold particles were found over sections of non‐inoculated wheat roots. The results indicate that 1,3‐β‐glucanase secreted by Ggt may be involved in pathogenesis of the take‐all fungus through degradation of callose in postinfectionally formed cell wall appositions, such as lignitubers.  相似文献   

12.
13.
The infecting hyphae of Phytophthora capsici grew intercellularly in infected tissues of roots and stems of pepper (Capsicum annuum). The vascular tissues were not markedly disorganized even when heavily infected. Intercellularly growing hyphae penetrated the host cells by forming haustorium-like bodies. The consistent features of ultrastructural changes in infected tissues of pepper roots and stems were degeneration of cell organelles and dissolution of host cell walls. The cytoplasm detached from the cell wall aggregated abundantly around some haustorium-like bodies or the penetration sites of fungal hyphae. The host cell walls were palely stained, thinned and swollen, possibly being biochemically altered by the action of fungal macerating enzymes. Electron-dense, wall-like material was apposed on the outer wall of xylem vessel contacted by fungal hyphae. The infecting hyphae were also surrounded by granular, dark-staining cytoplasm. Characteristics of host cell responses to the invading P. capsici were the deposition of papilla-like material on host cell walls next to hyphae and the encasement of haustorium-like bodies with wall appositions.  相似文献   

14.
Ascodichaena rugosa Butin is a corkinhabiting fungus, found frequently on the bark of Fagus sylvatica L. The hyphae of the fungus are distributed solely in the phellem cells, stopping their growth in the last-formed cork cell layer. The cell to cell invasion is effected by penetration hyphae, causing no extensive dissolution of the cork wall. Electron microscopical observations revealed fine structural details of the fruit bodies and of the intracellular hyphae. Of special interest were the finger-like hyaline hyphae in the last-formed layer of cork cells, which are interpreted as haustoria on the basis of the fine structure both of hyphae and host cells. This situation is considered as reflecting a parasitic relationship of Ascodichaena to beech bark. The activity of the fungus led also to the increased production of cork cells, perhaps related to the nutrient supply of the fungus.  相似文献   

15.
Electron microscopy was used to study the infection of sunflower leaves by Alternaria helianthi. Conidia germinated by producing one to many germ tubes which grew across the leaf surface before forming appressoria. The fungus directly penetrated its host through the cuticle and epidermis. Entry into the host through wounds and stomates was also observed. Extracellular sheaths were found to be associated with germ tubes and intercellular hyphae of A. helianthi. Conidiophores developed through collapsed stomates, from leaf veins, trichomes and also from mycelium growing across the host leaf surface. Microcylic conidia were produced directly from parent conidia under certain conditions. Studies using a volumetric spore trap showed that the airborne spore concentration followed a distinct periodicity with peaks occurring between 0900 and 1100 h each day. Laboratory studies showed that safflower, noogoora burr and bathurst burr could serve as alternative hosts for A. helianthi. The pathogen was readily isolated from sunflower crop debris from a diseased crop that had been harvested 1 yr earlier.  相似文献   

16.
Walls of uredospores, infection structures, intercellular hyphae and haustoria of the soybean rust fungus (Phakopsora pachyrhizi) were studied by electron microscopy using gold-labeled wheat germ lectin (WGL) and Concanavalin A (ConA) as cytochemical probes. Receptors for WGL (probably chitin) were detected in all fungal walls included in this study. WGL-binding occurred throughout the entire walls (uredospores, appressorial cone, penetration hyphae, haustorial mother cells) or only to the inner wall layers (germ tubes, appressoria, intercellular hyphae).  相似文献   

17.
Early interactions between invading penetration hyphae of the pathogenic fungus Magnaporthe oryzae and rice cells occur at the apoplast, the free diffusional space outside the plasma membrane of leaves. After initial colonization, intercellular hyphae are again in intimate contact with the rice apoplast. While several studies have looked at proteomics in rice–Magnaporthe interactions, none have focused on apoplast localized proteins. We adjusted a protocol for intercellular washing fluids (IWF) to rice leaves infected with Magnaporthe oryzae for proteomic analysis. In our IWF extract, we identified several proteins associated with compatible or incompatible pathogen interactions. Three DUF26 domain proteins were identified as changing in abundance 12 h after inoculation, confirming DUF26 domain-containing proteins are among early, pathogen stress-responsive proteins induced by infection with Magnaporthe oryzae. A Magnaporthe cyclophilin, previously identified as a virulence factor was also identified in the intercellular washing fluid.  相似文献   

18.
The soilborne ascomycete fungus Verticillium dahliae causes destructive vascular wilt disease in hundreds of dicotyledonous plant species. However, our understanding of the early invasion from the epidermis to the vasculature and the prompt proliferation and colonization in the xylem tissues remains poor. To elaborate the detailed infection strategy of V. dahliae in host plants, we traced the whole infection process of V. dahliae by live-cell imaging combined with high-resolution scanning electron microscopy. The 4D image series demonstrated that the apex of invading hyphae becomes tapered and directly invades the intercellular space of root epidermal cells at the initial infection. Following successful epidermal invasion, the invading hyphae extend in the intercellular space of the root cortex toward the vascular tissues. Importantly, the high-resolution microscopic and live-cell images demonstrated (a) that conidia are formed via budding at the apex of the hyphae in the xylem vessels to promote systemic propagation vertically, and (b) that the hyphae freely cross adjacent xylem vessels through the intertracheary pits to achieve horizontal colonization. Our findings provide a solid cellular basis for future studies on both intracellular invasion and vascular colonization/proliferation during V. dahliae infection and pathogenesis in host plants.  相似文献   

19.
Summary Zea mays is a non-host ofPhytophthora cinnamomi; plants survive contact with this fungus both in the field and in pot trials. TheZ. mays-P. cinnamomi interaction has been studied by light and electron microscopy. In the epidermal layer, fungal hyphae grow intercellularly through the middle lamella. This is always the case for the first hyphal contact with any cell. Hyphae making second or subsequent contacts with a cell grow preferentially between the cell wall and plasma membrane of the infected cell rather than through the middle lamella.Papillae (callose deposits) are formed in response to some, but not all, regions of contact between the plant cell and the hypha. They do not completely encase the hypha and do not stop hyphal growth. The plasma membrane-cell wall interface of the host cell must be intact for effective papilla formation, as papillae are rarely formed when the hyphae grow between the plasma membrane and the cell wall.  相似文献   

20.
Colletotrichum graminicola, the causal agent of maize anthracnose, is a hemibiotrophic fungus that initially infects living host cells via primary hyphae surrounded by a membrane. A nonpathogenic mutant disrupted in a gene encoding a component of the signal peptidase complex, and believed to be deficient in protein processing and secretion, regained pathogenicity when it was inoculated onto maize leaf sheaths close to the wild‐type fungus. Evidence is presented suggesting that the wild‐type produces a diffusible factor(s) that induces the localized susceptibility of host cells at the borders of expanding colonies, causing them to become receptive to biotrophic invasion. The induced susceptibility effect is limited to a distance of approximately eight cells from the edge of the wild‐type colony, is dosage dependent and is specific to C. graminicola.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号