首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between endothelin-1 (ET)-induced phosphoinositide (PI) hydrolysis and agents that increase Ca2+ influx (i.e. A23187 and ionomycin) or induce depolarization (i.e. KCl) were investigated using C6 glioma. A23187 dose-dependently potentiated ET (30 nM)- and ATP (100 microM)-induced [3H]inositol phosphate (IP) accumulation. This potentiation was associated with an increase in the maximal stimulation elicited by both ET and ATP but their EC50 values were unchanged. This effect of A23187 occurred at concentrations that did not affect basal PI turnover; i.e. 10 nM-3 microM. Ionomycin within the range of 1 nM-1 microM also significantly enhanced ET-induced PI breakdown and this effect was associated with an increase of [Ca2+]i. KCl in a concentration-dependent manner (14.7-54.7 mM) markedly inhibited PI breakdown elicited by ET and ATP, but had much less inhibition on basal activity and no effect on A23187- and ionomycin-induced responses. In parallel, KCl added before or after ET, sharply attenuated the increase of ET-induced [Ca2+]i but did not affect basal level or ionomycin-induced [Ca2+]i response. Neither the potentiation by A23187 nor the inhibition by KCl of ET-induced PI turnover was observed in cultured cerebellar astrocytes. Our results suggest that the cell type-specific regulation by Ca2+ ionophores and KCl on ET-induced PI metabolism is closely related to perturbation of [Ca2+]i.  相似文献   

2.
The effects of a potassium (K+) channel opener BRL34915 and a specific K+ ionophore valinomycin on vasoconstriction induced by endothelin (ET) were compared with those of calcium (Ca2+) channel blockers, nicardipine and verapamil, using helical strips from rat thoracic aorta. ET induced potent and persistent contraction in control solution and similar but smaller contraction in Ca2+-free solution. BRL34915 and valinomycin inhibited the ET-induced contraction dose-dependently in control solution, but not in Ca2+-free solution. The ET-induced contraction was also inhibited by nicardipine and verapamil, though less strongly. On the other hand, high K+ (35 mM)-induced vasoconstriction was strongly inhibited by nicardipine and verapamil, but not by BRL34915 or valinomycin. These results support the idea that the extracellular Ca2+-dependent component of the ET-induced contraction may be mediated by Ca2+ influx by a route other than voltage-dependent Ca2+-channels.  相似文献   

3.
The phasic contraction to phenylephrine of the rat isolated portal vein was investigated using functional studies. Phasic contractions to phenylephrine and caffeine could be produced after several minutes in Ca(2+)-free Krebs solution, which were inhibited by cyclopiazonic acid or ryanodine. The phenylephrine and caffeine contractions were abolished, however, within 10 min in Ca(2+)-free Krebs solution and by nifedipine. This indicated the Ca(2+) stores were depleted in the absence of Ca(2+) influx through voltage-gated channels. The phasic contraction to phenylephrine was also abolished by niflumic acid even in Ca(2+)-free Krebs solution. This showed that the response depended on intracellular Ca(2+) release stimulated directly by depolarization, resulting from opening of Ca(2+)-activated Cl(-) channels, but did not require Ca(2+) influx. In support of this, K(+)-induced phasic contractions were also produced in Ca(2+)-free Krebs solution. The phenylephrine but not K(+)-induced phasic contractions in Ca(2+)-free Krebs solution were inhibited by ryanodine or cyclopiazonic acid. This would be consistent with Ca(2+) release from more superficial intracellular stores (affected most by these agents), probably by inositol 1,4,5-trisphospate, being required to stimulate the phenylephrine depolarization.  相似文献   

4.
Effects of porcine-human endothelin-1 on mechanical as well as electrical activities and on intracellular free Ca2+ levels in the guinea pig taenia coli were compared with those of nifedipine, a voltage-dependent Ca2+ channel blocker. Endothelin-1 (0.1-100 nM) caused a concentration-dependent suppression of spontaneous contractions but did not significantly affect the sustained contraction evoked by 40 mM KCl. However, nifedipine (0.1-100 nM) inhibited both types of contractions in a concentration-dependent manner. In electrophysiological studies, endothelin-1 (30 nM) or nifedipine (30 nM) eliminated spontaneous spike discharges. Endothelin-1 produced hyperpolarization, while nifedipine did not change the resting membrane potential. The endothelin-1 induced suppression of spontaneous contractions was dose-dependently antagonized by apamin (0.01-10 nM), an inhibitor of a small conductance Ca(2+)-dependent K+ channel, and D-tubocurarine (10-100 microM), an inhibitor of Ca(2+)-dependent K+ channel, but was unaffected by 4-aminopyridine (0.01-1 mM), an inhibitor of a voltage-dependent K+ channel. In the study with fura 2 excited at 340 nm, endothelin-1 abolished, from the tissue, the fluorescence signals that were coupled with spontaneous contraction. It is suggested that the inhibitory action of endothelin-1 on spontaneous contraction may be caused by hyperpolarization of the membrane that reduces the spontaneous generation of spike discharge coupled normally to an increase in the intracellular free Ca2+ levels in the guinea pig taenia coli. The hyperpolarization may be caused by activating apamin-sensitive Ca(2+)-dependent K+ channels.  相似文献   

5.
Contractions of isolated single myocytes of guinea pig heart stimulated by rectangular depolarizing pulses consist of a phasic component and a voltage dependent tonic component. In this study we analyzed the mechanism of activation of the graded, sustained contractions elicited by slow ramp depolarization and their relation to the components of contractions elicited by rectangular depolarizing pulses. Experiments were performed at 37 degrees C in ventricular myocytes of guinea pig heart. Voltage-clamped myocytes were stimulated by the pulses from the holding potential of -40 to +5 mV or by ramp depolarization shifting voltage within this range within 6 s. [Ca2+]i was monitored as fluorescence of Indo 1-AM and contractions were recorded with the TV edge-tracking system. Myocytes responded to the ramp depolarization between -25 and -6 mV by the slow, sustained increase in [Ca2+]i and shortening, the maximal amplitude of which was in each cell similar to that of the tonic component of Ca2+ transient and contraction. The contractile responses to ramp depolarization were blocked by 200 microM ryanodine and Ca2+-free solution, but were not blocked by 20 microM nifedipine or 100-200 microM Cd2+ and potentiated by 5 mM Ni2+. The responses to ramp depolarization were with this respect similar to the tonic but not to the phasic component of contraction: both components were blocked by 200 microM ryanodine, and were not blocked by Cd2+ or Ni2+ despite complete inhibition of the phasic Ca2+ current. However, the phasic component but not the tonic component of contraction in cells superfused with Ni2+ was inhibited by nifedipine. Both components of contraction were inhibited by Ca2+-free solution superfused 15 s prior to stimulation. CONCLUSIONS: In myocytes of guinea pig heart the contractile response to ramp depolarization is equivalent to the tonic component of contraction. It is activated by Ca2+ released from the sarcoplasmic reticulum by the ryanodine receptors. Their activation and inactivation is voltage dependent and it does not depend on the Ca2+ influx by the Ca2+ channels or reverse mode Na+/Ca2+ exchange, however, it may depend on Ca2+ influx by some other, not yet defined route.  相似文献   

6.
The effects of zero extracellular Ca2+ on the contractility of rat diaphragmatic strips in vitro were studied in conjunction with various pharmacological agents known to influence the intracellular Ca2+ concentration: the Na+ ionophore, monensin, and the Na(+)-K+ pump inhibitor, ouabain, which enhance [Ca2+]i, caffeine, which induces Ca2+ release from the sarcoplasmic reticulum (SR), and ryanodine, which prevents Ca2+ retention by the SR. The effect of increasing [Ca2+]i on diaphragmatic contraction was assessed by comparing contractions induced by 120 mM K+ in the small muscle strips before and after the addition of ouabain or monensin. Monensin (20 microM) and ouabain (1-100 microM) augmented contractions up to threefold. Treatment of diaphragm strips with 3 nM ryanodine increased baseline tension 360% above the original resting tension but only if the diaphragm was electrically stimulated concurrently; 100 microM ryanodine induced contracture in quiescent tissue. High K+ contractures were of greater magnitude in the presence of ryanodine compared with control, and relaxation time was prolonged by greater than 200%. Ca(2+)-free conditions ameliorated these actions of ryanodine. Ryanodine reduced contractions induced by 10 mM caffeine and nearly abolished them in Ca(2+)-free solution. The data demonstrate that extracellular Ca2+ is important in certain types of contractile responses of the diaphragm and suggest that the processes necessary to utilize extracellular Ca2+ are present in the diaphragm.  相似文献   

7.
Endothelin-1 (ET) induces increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), Ca(2+) sensitization, and contraction of both bronchiole and pulmonary arteriole smooth muscle cells (SMCs) and may play an important role in the pathophysiology of asthma and pulmonary hypertension. However, because it remains unclear how changes in [Ca(2+)](i) and the Ca(2+) sensitivity regulate SMC contraction, we have studied mouse lung slices with phase-contrast and confocal microscopy to correlate the ET-induced contraction with the changes in [Ca(2+)](i) and Ca(2+) sensitivity of bronchiole and arteriole SMCs. In comparison with acetylcholine (ACh) or serotonin (5-HT), ET induced a stronger and long-lasting contraction of both bronchioles and arterioles. This ET-induced contraction was associated with prominent asynchronous Ca(2+) oscillations that were propagated as Ca(2+) waves along the SMCs. These Ca(2+) oscillations were mediated by cyclic intracellular Ca(2+) release and required external Ca(2+) for their maintenance. Importantly, as the frequency of the Ca(2+) oscillations increased, the extent of contraction increased. ET-induced contraction was also associated with an increase in Ca(2+) sensitivity. In "model" slices in which the [Ca(2+)](i) was constantly maintained at an elevated level by pretreatment of slices with caffeine and ryanodine, the addition of ET increased bronchiole and arteriole contraction. These results indicate that ET-induced contraction of bronchiole and arteriole SMCs is regulated by the frequency of Ca(2+) oscillations and by increasing the sensitivity of the contractile machinery to Ca(2+).  相似文献   

8.
Ethanol-induced analgesia   总被引:1,自引:0,他引:1  
L A Pohorecky  P Shah 《Life sciences》1987,41(10):1289-1295
The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5-1.5 g/kg) produced rapid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to produce non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity.  相似文献   

9.
Contractions of guinea pig trachea in the absence and presence of indomethacin to LTD4 greater than LTC4 greater than K+ greater than histamine greater than acetylcholine were reduced following a 45 minute exposure of the tissues to calcium-free Krebs' solution (Ca2+-free Krebs' solution), were further reduced by a transient exposure to EGTA (1.25 mM) in Ca2+-free Krebs' solution and were virtually abolished when tested in the presence of EGTA (0.125 mM) in Ca2+-free Krebs' solution. In normal Krebs' solution (2.5 mM Ca2+) the Ca2+ entry blockers nifedipine (N) much greater than D-600 greater than verapamil (V) greater than diltiazem (D) almost completely abolished the contractions to K+ but blocked only a component of the maximum response to the other agonists. After exposure to Ca2+-free Krebs' solution for 45 minutes, any residual contractions to LTC4 & LTD4, were reversed by low concentrations of N (0.3 microM) or D-600 (2.1 microM). Leukotrienes appear to mobilize a superficial and a bound store of Ca2+ which gains entry through at least two types of Ca2+ channels (or mechanisms), one of which is blocked by N and D600. K+-induced contractions appear to be dependent on superficial and tightly bound Ca2+ but entry is solely through channels which are blocked by the Ca2+ entry blockers studied. Contraction to histamine and acetylcholine persisted following exposure of the tissues to Ca2+ free Krebs' solution but contractile activity was virtually abolished in Ca2+ free Krebs' solution containing EGTA. Residual contractions to histamine and part of the residual contractions to acetylcholine in Ca2+-free Krebs' solution were blocked by low dose N (0.3 microM) or D600 (2.1 microM). These findings suggest a major role for extracellular Ca2+ during spasmogen-induced contraction in this tissue.  相似文献   

10.
The cholinergic sensitivity of rat diaphragm muscle, me-sured as the magnitude of depolarization responses to repetitive, iontophoretic pulses of acetylcholine (ACh) onto neuromuscular endplates, is increased by addition of ATP to the perfusion medium. Depolarization responses begin to increase within the first min after addition of 10 mM ATP and plateau at 60% above control levels (mean value) after 4 to 6 min. Neither the magnitude nor the time course of the potentiations corresponds to changes in resting potential or membrane resistance. Other nucleotides are equally or less effective at the same concentration: ATP=ADP greater than UTP greater than AMP=GTP (=no added nucleotide control) The duration of the individual ACh responses does not increase during continuous exposure to the active nucleotides for up to 15 min except when the muscle is pretreated with eserine. Mild enzymatic predigestion of the muscle with collagenase and then protease, increasing the availability of the postjunctional membrane to bath-applied drugs, decreases the variability and increases the magnitude of the potentiation to a given dose of ATP. The dose-response curve for ATP is then more than half-maximal at 1 mM and the ranking of the other nucleotides relative to ATP is the same as without predigestion. There is an optimum Ca++ concentration for the potentiation between zero and 2 mM: potentiation is enhanced in Ca++ -free medium, partially blocked in twice-normal Ca++ medium, and totally blocked in Ca++ -free medium 10 min after a 5 min exposure to 2.5 mM EGTA. The similar Ca++ dependence of ACh receptor activation in the absence of added nucleotide suggests that ATP directly facilitates receptor activation by ACh. This facilitory action could be one of the physiological roles for the ATP released from stimulated phrenic nerve.  相似文献   

11.
The effects of eugenol (1-2000 microM) on rat isolated ileum were studied. Eugenol relaxed the basal tonus (IC50 83 microM) and the ileum precontracted with 60 mM KCl (IC50 162 microM), an action unaltered by 0.5 microM tetrodotoxin, 0.2 mM N(G)-nitro-L-arginine methyl ester, 0.5 mM hexamethonium, and 1 microM indomethacin. Eugenol did not alter the resting transmembrane potential (Em) of the longitudinal muscle layer under normal conditions (5.0 mM K+) or in depolarised tissues. Eugenol reversibly inhibited contractions induced by submaximal concentrations of acetylcholine (ACh) and K+ (40 mM) with IC50 values of approximately 228 and 237 microM, respectively. Eugenol blocked the component of ACh-induced contraction obtained in Ca(2+)-free solution (0.2 mM EGTA) or in the presence of nifedipine (1 microM). Our results suggest that eugenol induces relaxation of rat ileum by a direct action on smooth muscle via a mechanism largely independent of alterations of Em and extracellular Ca2+ influx.  相似文献   

12.
The effects of several modulators of ryanodine receptors (RYRs) on the reduction of acetylcholine induced inward current (ACh-current) evoked by EPYLRFamide (5 microM, bath application), the potent N-terminally modified analogue of the endogenous Helix heptapeptide SEPYLRFamide, were investigated. These modulators were applied intracellularly. Inward currents were recorded from identified Helix lucorum LPa2, LPa3, RPa3, RPa2 neurones in ganglia preparations using the two-electrode voltage clamp technique. ACh was applied ionophoretically. BAPTA (0.1 mM), chelator of intracellular Ca(2+), ryanodine (0.1 mM), agonist/antagonist of RYRs and dantrolene (0.1 mM), antagonist of RYRs decrease the effect of EPYLRFamide. Adenosine (1 mM), alpha,beta-methylene ATP (0.1 mM), the nonhydrolisable ATP analogue and cyclic adenosine diphosphate ribose (0.1 mM) (agonists of RYRs) potentiate the modulatory effect of EPYLRFamide. Ruthenium red (1 mM), antagonist of RYRs and caffeine (1 mM), agonist of RYRs do not change the modulatory effect of EPYLRFamide. These data suggest that intracellular Ca(2+) and RYRs are involved in the modulatory effect of EPYLRFamide on ACh-currents. It was concluded that EPYLRFamide decreases ACh-current through elevation of basal intracellular level of a putative endogenous agonist of RYRs which activates RYR-dependent mobilization of Ca(2+) by binding to the adenine nucleotide site of the ryanodine receptor-channel complex and does not bind the site activated by caffeine.  相似文献   

13.
Ju YJ  Wang CM  Hung AC  Lo JC  Lin HJ  Sun SH 《Cellular signalling》2003,15(2):197-207
The present study demonstrated that endotheline-1 (ET-1) stimulated a biphasic (transient and sustained) increase in [Ca(2+)](i) and signaling was blocked by BQ123 and inhibited by BQ788. RT-PCR analysis revealed that ET(A) was expressed more than ET(B) mRNA-suggesting that ET(A) is the major receptor. Simply reintroducing Ca(2+) in the buffer stimulated a sustained increase in [Ca(2+)](i) and the effect was inhibited by U73122, thapsigargin (TG), miconazole and SKF96365. When measured in Ca(2+)-free buffer, the ET-1-stimulated Ca(2+) transient decreased by 73% and the reintroduction of Ca(2+) induced a large sustained increase in [Ca(2+)](i). These effects were not affected by nifedipine, but were inhibited by miconazole and SKF96365-indicating that the sustained increase in [Ca(2+)](i) mediated by ET-1 was mostly due to capacitative Ca(2+) entry (CCE). The ET-1-induced CCE was inhibited by phorbol ester (PMA) but was enhanced by GF109203X; it was also enhanced by 8-bromo-cyclic AMP (8-Br-cAMP) but was inhibited by H89. Thus, protein kinase C (PKC) negatively regulated and cAMP-dependent protein kinase (PKA) positively regulated the ET-1-mediated CCE in these cells.  相似文献   

14.
Action potentials and developed contractions of externally unloaded single ventricular myocytes isolated from adult rat and guinea pig hearts were recorded by means of an optical system for recording contractile activity during regular stimulation by microelectrodes. Under control conditions, the shortenings (twitches) in the rat myocytes were fully inhibited by 0.1 microM ryanodine, but they were rather insensitive to the Ca2+ blocker 0.2-0.5 microM nifedipine. In contrast, the contractions of the isolated guinea pig ventricular myocytes were greatly suppressed by 0.2-0.5 microM nifedipine (to less than 30%), while they were only slightly reduced by 1 microM ryanodine. When the Na+ gradient was decreased by reducing [Na]o or by elevating [Na]i in the presence of veratridine, the twitch contractions were increased in both species. The effect of reduced [Na]o on twitch contractions was not affected by ryanodine in either type of myocytes, while nifedipine still fully abolished the twitches in the guinea pig cells, indicating a strong dependence of guinea pig contractions on Ca2+ influx. On the other hand, the effect of a reduced Na gradient by veratridine was more complex; the usual twitch (phasic component) was increased and it was followed by a second (tonic) component which relaxed only after the repolarization of the action potential. While the phasic component was decreased by nifedipine and ryanodine in the usual way (as in the controls), the sustained contractions (lasting up to several seconds) were ryanodine and nifedipine insensitive. Furthermore, the cardiomyocytes of both species exposed to strontium in place of external calcium still exhibited all the effects observed when reducing the Na+ gradient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The alpha1-adrenoceptor subtype mediating noradrenaline (NA)-induced contractions of rat epididymal vas deferens in Ca2+-free/EGTA (1 mM) medium was studied using competitive antagonists. The effects of chloroethylclonidine (CEC) was investigated in Ca2+-free and normal Krebs' medium and RT-PCR was used to identify alpha1-adrenoceptor specific mRNA in epididymal vas deferens. In Ca2+-free medium, NA evoked sustained contractions but was less potent (pD2, 5.9) than in normal Krebs' medium (pD2, 7.3). The contractions in Ca2+-free medium were inhibited by prazosin (pA2, 9.3), 5-methylurapidil (pA2, 8.4), spiperone (pA2, 7.6) and BMY 7378 (pK(B), 6.8) consistent with activation of alpha1A-subtype. Repeated pretreatment with CEC (100 microM) reduced the potency of NA and maximum contractions in normal and Ca2+-free media. CEC-sensitivity in normal Krebs' medium was enhanced by prior treatment with phenoxybenzamine. mRNA for alpha1a- and alpha1d- but not alpha1b-adrenoceptors were detected in epididymal vas deferens. These results suggest that NA contracts the tissue in Ca2+-free medium by the stimulation of alpha1A-adrenoceptors. Two factors affecting CEC-sensitivity of NA-induced contractions in this tissue are discussed.  相似文献   

16.
To determine the role of endothelium in hypoxic pulmonary vasoconstriction (HPV), we measured vasomotor responses to hypoxia in isolated seventh-generation porcine pulmonary arteries < 300 microm in diameter with (E+) and without endothelium. In E+ pulmonary arteries, hypoxia decreased the vascular intraluminal diameter measured at a constant transmural pressure. These constrictions were complete in 30-40 min; maximum at PO(2) of 2 mm Hg; half-maximal at PO(2) of 40 mm Hg; blocked by exposure to Ca(2+)-free conditions, nifedipine, or ryanodine; and absent in E+ bronchial arteries of similar size. Hypoxic constrictions were unaltered by indomethacin, enhanced by indomethacin plus N(G)-nitro-L-arginine methyl ester, abolished by BQ-123 or endothelial denudation, and restored in endothelium-denuded pulmonary arteries pretreated with 10(-10) M endothelin-1 (ET-1). Given previous demonstrations that hypoxia caused contractions in isolated pulmonary arterial myocytes and that ET-1 receptor antagonists inhibited HPV in intact animals, our results suggest that full in vivo expression of HPV requires basal release of ET-1 from the endothelium to facilitate mechanisms of hypoxic reactivity in pulmonary arterial smooth muscle.  相似文献   

17.
P Vigne  M Lazdunski  C Frelin 《FEBS letters》1989,249(2):143-146
Endothelin-1 induces a positive inotropic response in isolated left atria of the rat with an IC50 value of 20 nM. The contractile effect of endothelin is larger than that of other inotropic hormones such as phenylephrine and epinephrine and smaller than that of Bay K8644. In the spontaneously active right atria, endothelin induces a positive inotropic effect with no chronotropic effect. Endothelin does not modify intracellular levels of cAMP under basal conditions or after stimulation with isoproterenol but stimulates the formation of inositol phosphates. Mobilization of inositol phospholipids is observed in the same range of concentrations as for the contractile action of endothelin. The contractile action of endothelin is not mediated by protein kinase C. It is antagonized by blockers of L-type Ca2+ channels, low external Ca2+ concentrations and drugs such as caffeine and ryanodine that interfere with Ca2+ release by the sarcoplasmic reticulum.  相似文献   

18.
G Tiger  C J Fowler 《Life sciences》1991,48(13):1283-1291
The calcium and potassium ion dependency of the inositol phospholipid breakdown response to stimulatory agents has been investigated in rat cerebral cortical miniprisms. The calcium channel agonist BAY K-8644 (10 microM) potentiated the response to carbachol at 6 mM K+ when Ca2(+)-free, but not when 2.52 mM Ca2+ assay buffer was used. In Ca2(+)-free buffer, verapamil (10 microM) inhibited the response to carbachol at both 6 and 18 mM K+ but higher concentrations (30-300 microM) were needed when 2.52 mM Ca2+ was used. At these higher concentrations, however, verapamil inhibited the binding of 2 nM [3H]pirenzepine to muscarinic recognition sites. N-Methyl-D-Aspartate (NMDA, 100 microM) significantly reduced the basal phosphoinositide breakdown rate at 18 mM K+ at 1.3 mM Ca2+, but was without effect on the basal rate at other K+ and Ca2+ concentrations. In the presence of NMDA (100 microM) or quisqualate (100 microM), the responses to carbachol were reduced, the degree of reduction showing a complex dependency upon the assay K+ and Ca2+ concentrations used. These results indicate that the inositol phospholipid breakdown response to carbachol in cerebral cortical miniprisms can be modulated in a manner dependent upon the extracellular calcium and potassium concentrations used.  相似文献   

19.
Ryanodine, a plant alkaloid, is one of the most widely used pharmacological probes for intracellular Ca(2+) signaling in a variety of muscle and non-muscle cells. Upon binding to the Ca(2+) release channel (ryanodine receptor), ryanodine causes two major changes in the channel: a reduction in single-channel conductance and a marked increase in open probability. The molecular mechanisms underlying these alterations are not well understood. In the present study, we investigated the gating behavior and Ca(2+) dependence of the wild type (wt) and a mutant cardiac ryanodine receptor (RyR2) after being modified by ryanodine. Single-channel studies revealed that the ryanodine-modified wt RyR2 channel was sensitive to inhibition by Mg(2+) and to activation by caffeine and ATP. In the presence of Mg(2+), the ryanodine-modified single wt RyR2 channel displayed a sigmoidal Ca(2+) dependence with an EC(50) value of 110 nm, whereas the ryanodine-unmodified single wt channel exhibited an EC(50) of 120 microm for Ca(2+) activation, indicating that ryanodine is able to increase the sensitivity of the wt RyR2 channel to Ca(2+) activation by approximately 1,000-fold. Furthermore, ryanodine is able to restore Ca(2+) activation and ligand response of the E3987A mutant RyR2 channel that has been shown to exhibit approximately 1,000-fold reduction in Ca(2+) sensitivity to activation. The E3987A mutation, however, affects neither [(3)H]ryanodine binding to, nor the stimulatory and inhibitory effects of ryanodine on, the RyR2 channel. These results demonstrate that ryanodine does not "lock" the RyR channel into an open state as generally believed; rather, it sensitizes dramatically the channel to activation by Ca(2+).  相似文献   

20.
The cardiac responses of Oreochromis niloticus acclimated to 25 degrees C were assessed using ventricle strips mounted for isometric force recording (Fc) and in vivo heart rate (f(H)). f(H) increased progressively from 25 to 40 degrees C. At extracellular Ca(2+) concentrations of 1.25 and 9.25 mM, a transition from 25 to 40 degrees C resulted in a decreased Fc. At both 25 and 40 degrees C, Fc rose when [Ca(2+)] was increased from 1.25 to 9.25 mM. Fc remained constant at 72 and 120 contractions.min(-1) at 25 and 40 degrees C, respectively, and declined thereafter. The post-rest potentiation was not influenced by ryanodine, indicating that the sarcoplasmic reticulum is not important to the excitation-contraction coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号