首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quorum sensing is a process by which bacteria communicate using secreted chemical signaling molecules called autoinducers. In this study, the opportunistic plant pathogen Erwinia carotovora ssp. carotovora was observed to secrete type II signaling molecules. A homolog of luxS, the gene required for AI-2 synthesis in Vibrio harveyi, was isolated from the genome of the pathogen. To determine the potential role of AI-2 in virulence, an isogenic luxS- (ECC) mutant was constructed and tested for its ability to cause tissue maceration. The findings reported here demonstrate that the LuxS-dependent signaling affects the progression of disease symptoms during the early stages of infection by modulating the expression of pectinolytic enzymes.  相似文献   

2.
Quorum sensing, the population density-dependent regulation mediated by N-acylhomoserine lactones (AHSL), is essential for the control of virulence in the plant pathogen Erwinia carotovora ssp. carotovora (Ecc). In Erwinia carotovora ssp. the AHSL signal with an acyl chain of either 6 or 8 carbons is generated by an AHSL synthase, the expI gene product. This work demonstrates that the AHSL receptor, ExpR1, of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. We have also identified a second AHSL receptor (ExpR2) and demonstrate a novel quorum sensing mechanism, where ExpR2 acts synergistically with the previously described ExpR1 to repress virulence gene expression in Ecc. We show that this repression is released by addition of AHSLs and appears to be largely mediated via the negative regulator RsmA. Additionally we show that ExpR2 has the novel property to sense AHSLs with different acyl chain lengths. The expI expR1 double mutant is able to act in response to a number of different AHSLs, while the expI expR2 double mutant can only respond to the cognate signal of Ecc strain SCC3193. These results suggest that Ecc is able to react both to the cognate AHSL signal and the signals produced by other bacterial species.  相似文献   

3.
4.
5.
The production of virulence factors and carbapenem antibiotic in the phytopathogen Erwinia carotovora is under the control of quorum sensing. The quorum-sensing signaling molecule, N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), accumulates in log-phase culture supernatants of E. carotovora but diminishes in concentration during the stationary phase. In this study, we show that the diminution in OHHL was not due to sequestration of the ligand by the cells, although some partitioning did occur. Rather, it was caused by degradation of the molecule. The rate of stationary-phase degradation of OHHL was as rapid as the rate of log-phase accumulation of the ligand, but it was nonenzymatic and led to a decrease in the expression of selected genes known to be under the control of quorum sensing. The degradation of OHHL was dependent on the pH of the supernatant, which increased as the growth curve progressed in cultures grown in Luria-Bertani medium from pH 7 to approximately 8.5. OHHL became unstable over a narrow pH range (pH 7 to 8). Instability was increased at high temperatures even at neutral pH but could be prevented at the growth temperature (30 degrees C) by buffering the samples at pH 6.8. These results may provide a rationale for the observation that an early response of plants which are under attack by Erwinia is to activate a proton pump which alkalizes the site of infection to a pH of >8.2.  相似文献   

6.
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   

7.
Polygalacturonase of Erwinia carotovora   总被引:22,自引:0,他引:22  
  相似文献   

8.
<正>Microorganisms act as a double-edged sword that can bring benefits and diseases to humans. Their physiological and metabolic processes are under precise control of intricate regulatory networks, in which signaling systems are critical for cells coordinating or competing with each other to overcome unfavorable environmental conditions, including the prompt and acute responses to endogenous or exogenous stimuli. In Streptomyces,  相似文献   

9.
Davis BM  Jensen R  Williams P  O'Shea P 《PloS one》2010,5(10):e13522
BACKGROUND: The long chain N-acylhomoserine lactone (AHL) quorum sensing signal molecules released by Pseudomonas aeruginosa have long been known to elicit immunomodulatory effects through a process termed inter-kingdom signaling. However, to date very little is known regarding the exact mechanism of action of these compounds on their eukaryotic targets. METHODOLOGY/PRINCIPAL FINDINGS: The use of the membrane dipole fluorescent sensor di-8-ANEPPS to characterise the interactions of AHL quorum sensing signal molecules, N-(3-oxotetradecanoyl)-L-homoserine lactone (3-oxo-C14-HSL), N-(3-oxododecanoyl)homoserine-L-lactone (3-oxo-C12-HSL) and N-(3-oxodecanoyl) homoserine-L-lactone (3-oxo-C10 HSL) produced by Pseudomonas aeruginosa with model and cellular membranes is reported. The interactions of these AHLs with artificial membranes reveal that each of the compounds is capable of membrane interaction in the micromolar concentration range causing significant modulation of the membrane dipole potential. These interactions fit simple hyperbolic binding models with membrane affinity increasing with acyl chain length. Similar results were obtained with T-lymphocytes providing the evidence that AHLs are capable of direct interaction with the plasma membrane. 3-oxo-C12-HSL interacts with lymphocytes via a cooperative binding model therefore implying the existence of an AHL membrane receptor. The role of cholesterol in the interactions of AHLs with membranes, the significance of modulating cellular dipole potential for receptor conformation and the implications for immune modulation are discussed. CONCLUSIONS/ SIGNIFICANCE: Our observations support previous findings that increasing AHL lipophilicity increases the immunomodulatory activity of these quorum compounds, while providing evidence to suggest membrane interaction plays an important role in quorum sensing and implies a role for membrane microdomains in this process. Finally, our results suggest the existence of a eukaryotic membrane-located system that acts as an AHL receptor.  相似文献   

10.
Erwinia spp. that cause soft-rot diseases in plants produce a variety of extracellular pectic enzymes. To assess the correlation between patterns of pectic enzyme production and taxonomic classification, we compared the enzymes from representative strains. Supernatants obtained from polygalacturonate-grown cultures of nine strains of Erwinia chrysanthemi, three strains of E. carotovora subsp. carotovora, and three strains of E. carotovora subsp. atroseptica were concentrated and subjected to ultrathin-layer polyacrylamide gel isoelectric focusing. Pectate lyase, polygalacturonase, and exo-poly-alpha-D-galacturonosidase activities were visualized by staining diagnostically buffered pectate-agarose overlays with ruthenium red after incubation of the overlays with the isoelectric focusing gels. The isoelectric focusing profiles of pectate lyase and polygalacturonase were nearly identical for strains of E. carotovora subsp. carotovora and E. carotovora subsp. atroseptica, showing three pectate lyase isozymes with isoelectric points higher than 8.7 and a polygalacturonase with pI of ca. 10.2. Isoelectric focusing profiles of the E. chrysanthemi pectic enzymes were substantially different. Although there was considerable intraspecific heterogeneity, all strains produced at least four isozymes of pectate lyase, which could be divided into three groups: basic (pI, ca. 9.0 to 10.0), slightly basic (pI, ca. 7.0 to 8.5), and acidic (pI, ca. 4.0 to 5.0). Several strains of E. chrysanthemi also produced a single form of exo-poly-alpha-D-galacturonosidase (pI, ca. 8.0).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract A promiscuous plasmid (pLM2) carrying amber mutations in two antibiotic-resistance genes was transferred to a derivative of Erwinia carotovora subsp. carotovora strain SCRI193. Following mutagenesis, two putative amber-suppressing mutants of this strain were isolated. The genotype of these mutants was confirmed by use of rep am plasmid-specific phage. This constitutes the first isolation of amber-suppressing mutants in Erwinia spp.  相似文献   

12.
A novel approach is proposed for the study of the macromolecular bacteriocins of Erwinia carotovora (MCTVs). The approach lies in that the bacteriocinogeny of pectolytic erwinia is studied using a lawn of a bacterial mutant resistant to nalidixic acid, an inducer of MCTVs. The high efficiency of this approach was demonstrated by studying carotovoricins in 104 different E. carotovora strains, 88% of which bear MCTVs, distinguished by the morphology of zones of induced lysis on a lawn of susceptible cells, the lysis pattern, and some other characteristics. Preliminary studies by this approach showed that there is no correlation between the occurrence of MCTVs in particular E. carotovora strains and the habitat of the host plants from which these strains were isolated. There are grounds to believe that the approach proposed can also be used for investigating bacterial lysogeny.  相似文献   

13.
Sodium fluoride induces filamentous growth of Erwinia carotovora when it is grown in liquid media containing aspartic acid only as the sole source of nitrogen. It is proposed that a stable complex of F(-)-Mg2+-enzyme and PO2(4) resulting in Mg2+ deficiency and consequent inability of E. carotovora cells to oxidize aspartic acid normally, is responsible for the formation of filaments in the presence of fluoride ions.  相似文献   

14.
15.
16.
17.
N -acylhomoserine lactone (AHL) quorum-sensing molecules modulate the swimming behaviour of zoospores of the macroalga Ulva to facilitate the location of bacterial biofilms. Here we show that the intertidal surfaces colonized by Ulva are dominated by Alphaproteobacteria , particularly the Rhodobacteraceae family, and the Bacteroidetes family Flavobacteriaceae , and that this diverse assemblage both produces and degrades AHLs. N -acylhomoserine lactones could also be extracted from the surfaces of pebbles recovered from intertidal rock-pools. Bacteria representative of this assemblage were isolated and tested for the production and degradation of AHLs, and for their ability to modulate zoospore settlement at different biofilm densities. Of particular interest was a Shewanella sp. This strain produced three major AHLs (OC4, OC10 and OC12) in the late exponential phase, but the longer-chain AHLs were rapidly degraded in the stationary phase. Degradation occurred via both lactonase and amidase activity. A close relationship was found between AHL synthesis and Ulva zoospore settlement. The Shewanella isolate also interfered with AHL production by a Sulfitobacter isolate and its ability to enhance zoospore settlement in a polymicrobial biofilm. This influence on the attachment of Ulva zoospores suggests that AHL-degrading strains can affect bacterial community behaviour by interfering with quorum sensing between neighbouring bacteria. More importantly, these interactions may exert wider ecological effects across different kingdoms.  相似文献   

18.
19.
Tovkach FI 《Mikrobiologiia》2002,71(3):359-367
The electron microscopic study of several Erwinia carotovora strains showed that the SOS-induced cells of this pectolytic phytopathogenic bacterium produce particular phage parts (tails, heads, and baseplates) but do not assemble them into fully functional phage particles. E. carotovora cells produced several times greater amounts of phage tails in response to induction by mitomycin C than in response to induction by nalidixic acid. The tails were 128-192 nm in length and 13-21 nm in diameter. Phage heads were characterized by four discrete ranges of diameters: 18, 55-59, 66-75, and 92-98 nm. The diameters of phage baseplates varied from 39 to 53 nm, depending on the particular strain. It was shown that cells of the same species may contain several different types of phage tails and heads. The structural organization of phage tails and baseplates in the nalidixic acid-induced lysate of E. carotovora J2 was studied in more detail. The data obtained suggest that pectolytic phytopathogenic erwinia are characterized by defective polylysogeny.  相似文献   

20.
Tovkach  F. I. 《Microbiology》2002,71(3):306-313
The electron microscopic study of several Erwinia carotovora strains showed that the SOS-induced cells of this pectolytic phytopathogenic bacterium produce particular phage parts (tails, heads, and baseplates) but do not assemble them into fully functional phage particles. E. carotovora cells produced several times greater amounts of phage tails in response to induction by mitomycin C than in response to induction by nalidixic acid. The tails were 128–192 nm in length and 13–21 nm in diameter. Phage heads were characterized by four discrete ranges of diameters: 18, 55–59, 66–75, and 92–98 nm. The diameters of phage baseplates varied from 39 to 53 nm, depending on the particular strain. It was shown that cells of the same species may contain several different types of phage tails and heads. The structural organization of phage tails and baseplates in the nalidixic acid–induced lysate of E. carotovora J2 was studied in more detail. The data obtained suggest that pectolytic phytopathogenic erwinia are characterized by defective polylysogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号