首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary Methods are described for isolation and culture of primary mesenchyme cells from echinoid embryos. Ninety-five percentpure primary mesenchyme cells were isolated from early gastrulae ofStrongylocentrotus purpuratus, exploiting the biological segregation of these cells within the blastocoel. When cultured, more than 90% of the isolated cells reached the differentiated state, spicule formation, in synchrony with in vivo controls. Isolated primary mesenchyme cells were cultured with and without various cellular and acellular components of normal embryos in order to study the potential involvement of these components in the morphogenesis of the primary mesenchyme. Our data indicate that: 1. primary mesenchyme cells lack the ability to form the annular pattern of the primary mesenchymal ring autonomously; 2. they autonomously produce spicules of a characteristic morphology that differs from that of embryonic spicules; 3. morphogenesis of the primary mesenchyme is not affected by association with embryonic basal lamina, blastocoel matrix, or loosely aggregated epithelial cells, or by close confinement of each set of primary mesenchyme cells within the blastocoelar space; and 4. reaggregated, tightly associated epithelial cells can promote normal primary mesenchyme ring formation, and modify the primary mesenchyme-intrinsic spicule pattern to produce more normal spicule forms.  相似文献   

2.
3.
Spicule matrix proteins are the products of primary mesenchyme cells, and are present in calcite spicules of the sea urchin embryo. To study their possible roles in skeletal morphogenesis, monoclonal antibodies against SM50, SM30 and another spicule matrix protein (29 kDa) were obtained. The distribution of these proteins in the embryo skeleton was observed by immunofluorescent staining. In addition, their distribution inside the spicules was examined by a 'spicule blot' procedure, direct immunoblotting of proteins embedded in crystallized spicules. Our observations showed that SM50 and 29 kDa proteins were enriched both outside and inside the triradiate spicules of the gastrulae, and also existed in the corresponding portions of growing spicules in later embryos and micromere cultures. The straight extensions of the triradiate spicules and thickened portions of body rods in pluteus spicules were also rich in these proteins. The SM30 protein was only faintly detected along the surface of spicules. By examination using the spicule blot procedure, however, SM30 was clearly detectable inside the body rods and postoral rods. These results indicate that SM50 and 29 kDa proteins are concentrated in radially growing portions of the spicules (normal to the c-axis of calcite), while SM30 protein is in the longitudinally growing portions (parallel to the c-axis). Such differential distribution suggests the involvement of these proteins in calcite growth during the formation of three-dimensionally branched spicules.  相似文献   

4.
An in vitro culture system for primary mesenchyme cells of the sea urchin embryo has been used to study the cellular characteristics of skeletal spicule formation. As judged initially by light microscopy, these cells attached to plastic substrata, migrated and fused to form syncytia in which mineral deposits accumulated in the cell bodies and in specialized filopodial templates. Subsequent examination by scanning electron microscopy revealed that the cell bodies and the filopodia and lamellipodia formed spatial associations similar to those seen in the embryo and indicated that the spicule was surrounded by a membrane-limited sheath derived by fusion of the filopodia. The spicules were dissolved from living or fixed cells by a chelator of divalent cations or by lowering the pH of the medium. However, granular deposits found in the cell bodies appeared relatively refractory to such treatments, indicating that they were inaccessible to agents that dissolved the spicules. Use of rapid freezing and an anhydrous fixative to preserve the syncytia for transmission electron microscopy and X-ray microprobe analysis, indicated that electron-dense deposits in the cell bodies contain elements (Ca, Mg and S) common to the spicule. Examination of the spicule cavity after dissolution of the spicule mineral revealed openings in the filopodia-derived sheath, coated pits within the limiting membrane and a residual matrix that stained with ruthenium red. Concanavalin A--gold applied exogenously entered the spicule cavity and bound to matrix glycoproteins. Based on these observations, we conclude that components of the spicule initially are sequestered intracellularly and that spicule elongation occurs in an extracellular cavity. Ca2+ and associated glycoconjugates may be routed in this cavity via a secretory pathway.  相似文献   

5.
Abstract. A tiny neomenioid postlarva (Neomeniomorpha, or Solenogastres) collected from the water column 3 to 6 m above the east Pacific seamount Fieberling Guyot has 6 iterated, transverse groups of spicules and 7 regions devoid of spicules between the transverse groups and the anterior-and posteriormost spicules. Three pairs of ventral, longitudinal zones with columns of single spicules, each pair with its own distinctive spicule morphology, lack transverse iteration. The 7 regions bare of spicules are compared to shell fields in developing polyplacophorans, and spicule arrangement is compared to sclerite arrangement on the Cambrian fossils Wiwaxia corrugata and Halkieria evangelista and to the spines and shell plates of the Silurian Acaenoplax hayae. The term iteration is used to denote processes that result in both metameric segments and repeated ectodermal skeletal structures. Iterative morphogenesis was probably present in bilateral animals before the Cambrian. Comparisons of iterated ectodermal skeletal structures among fossil and extant forms are suggested to indicate evolutionary relationship.  相似文献   

6.
7.
Many of the invertebrates possess calcium carbonate spicules.This paper is a review of the formation of these structuresin the Porifera, Coelenterata, Platyhelminthes, Mollusca, Echinodermataand Ascidiacea. Mature spicules appear to be extracellular structures.Sponge spicules initiate intercellularly then become extracellular.Alcyonarian, turbellarian, echinoid and ascidian spicule depositionbegins intracellularly and then becomes extracellular. The continuationof growth in the extracellular environment has not been documentedexcept for the echinoids. Placophoran spicules initiate andremain as extracellular structures. Early spicule growth seemsto occur from or within a single cell. However, cell aggregationand/or neighboring cells appear to be important to the processof spicule formation. The spicule forming cells, in general,are found in a collagenous medium which may be associated withspicule growth. The organic matrix from the spicules of the gorgonian Leptogorgiavirgulata is a glycoprotein. Autoradiography reveals that thismatrix is apparently synthesized in the rough endoplasmic reticulumand Golgi complexes and then transported to the spicule formingvacuole via Golgi vesicles. To gain information about the entryand transport of calcium ions, the effects of ouabain and vanadateon calcium uptake were examined. Ouabain had no effect on calciumuptake. Vanadate treatment increased the uptake of calcium inscleroblasts and epithelial tissue and decreased its uptakein spicules. This may suggest that vanadate sensitive ATPasesare involved in the pumping of calcium out of scleroblasts,out of epithelial cells into the mesoglea, and into scleroblastorganelles. Autoradiography using 45Ca indicates that the majorityof these ions initially accumulate in the branch axis. The labelmoves through the axial epithelium to the mesoglea and reachesthe spiculeforming vacuoles in the scleroblasts via dense bodies  相似文献   

8.
The proto-oncogene Sno has been shown to be a negative regulator of transforming growth factor beta (TGF-beta) signaling in vitro, using overexpression and artificial reporter systems. To examine Sno function in vivo, we made two targeted deletions at the Sno locus: a 5' deletion, with reduced Sno protein (hypomorph), and an exon 1 deletion removing half the protein coding sequence, in which Sno protein is undetectable in homozygotes (null). Homozygous Sno hypomorph and null mutant mice are viable without gross developmental defects. We found that Sno mRNA is constitutively expressed in normal thymocytes and splenic T cells, with increased expression 1 h following T-cell receptor ligation. Although thymocyte and splenic T-cell populations appeared normal in mutant mice, T-cell proliferation in response to activating stimuli was defective in both mutant strains. This defect could be reversed by incubation with either anti-TGF-beta antibodies or exogenous interleukin-2 (IL-2). Together, these findings suggest that Sno-dependent suppression of TGF-beta signaling is required for upregulation of growth factor production and normal T-cell proliferation following receptor ligation. Indeed, both IL-2 and IL-4 levels are reduced in response to anti-CD3 epsilon stimulation of mutant T cells, and transfected Sno activated an IL-2 reporter system in non-T cells. Mutant mouse embryo fibroblasts also exhibited a reduced cell proliferation rate that could be reversed by administration of anti-TGF-beta. Our data provide strong evidence that Sno is a significant negative regulator of antiproliferative TGF-beta signaling in both T cells and other cell types in vivo.  相似文献   

9.
Cao X  Fu W  Yu X  Zhang W 《Cell and tissue research》2007,329(3):595-608
To characterize the formation of silica spicules, the dynamics of spiculogenesis of an intertidal marine sponge Hymeniacidon perlevis (Montagu 1818) (Porifera: Demospongiae) were investigated by measuring the gene expression of silicatein (the enzyme responsible for spicule silicification) and the dimensional changes of spicules during the developmental process of individual sponges and in cell cultures of primmorphs of archaeocyte-dominant cell populations. The different developmental stages of spicules were documented by time-lapse microscopy and observed by transmission electron microscopy during a 1-month culture period. During its annual life cycle, H. perlevis has four different developmental stages: dormancy, resuscitation, bloom, and decline. Field-grown individual sponge samples at different stages were collected over 7 months (March to September 2005). The dimensions of the silica spicules from these samples were microscopically measured and statistically analyzed. This analysis and the material properties of the spicules allowed them to be classified into four groups representing the different developmental stages of spiculogenesis. Silicatein expression in the bloom stage was more than 100 times higher than that in the other stages and was correlated with the spicule developmental stage. The trend of spicule formation in field-grown sponges was consistent with the trend in cell culture. A new parameter, the maturation degree (MD) of spicules (defined as the ratio of actual to theoretical silica deposition of mature spicules), was introduced to quantify spicule development. Silica spiculogenesis during H. perlevis development was delineated by comparing MD and silicatein expression.  相似文献   

10.
The spicules of the sea urchin embryo form in intracellular membrane-delineated compartments. Each spicule is composed of a single crystal of calcite and amorphous calcium carbonate. The latter transforms with time into calcite by overgrowth of the preexisting crystal. Relationships between the membrane surrounding the spiculogenic compartment and the spicule mineral phase were studied in the transmission electron microscope (TEM) using freeze-fracture. In all the replicas observed the spicules were tightly surrounded by the membrane. Furthermore, a variety of structures that are related to the material exchange process across the membrane were observed. The spiculogenic cells were separated from other cell types of the embryo, frozen, and freeze-dried on the TEM grids. The contents of electron-dense granules in the spiculogenic cells were shown by electron diffraction to be composed of amorphous calcium carbonate. These observations are consistent with the notion that the amorphous calcium carbonate-containing granules contain the precursor mineral phase for spicule formation and that the membrane surrounding the forming spicule is involved both in transport of material and in controlling spicule mineralization.  相似文献   

11.
Germanium (Ge), in the form of germanic acid, at a Ge/Si molar ratio of 1.0 inhibits gemmule development and silica deposition in the marine demosponge Suberites domuncula. Lower Ge/Si ratios inhibit the growth in length of the silica spicules (tylostyles) producing short structures, but with relatively normal morphology and close to normal width; spherical protuberances occasionally occur on these spicules. A few of the short spicules possess completely round rather than pointed tips. Many of the latter develop when Ge is added (pulsed) to growing animals, thus inducing a change in spicule type. These results indicate that the growth in length of the axial filament is more sensitive to Ge inhibition than is silica deposition and that pointed spicule tips normally develop because the growth of the axial filament at the spicule tip is more rapid than silica deposition. Newly formed spicules initiate silica deposition at the spicule head but the absence of Ge-induced bulbs as in freshwater spicules (oxeas) leaves open the question of whether there is a silicification center(s) present in Suberites tylostyles. The morphogenesis of freshwater oxeas and of marine tyolstyles appears fundamentally different-bidirectional growth in the former and unidirectional growth in the latter. X-ray analysis demonstrate relatively uniform Ge incorporation into the silica spicules with considerable variation from spicule to spicule in the incorporated level. Increased silicic acid concentration induces the formation of siliceous spheres, suggesting that the axial filament becomes prematurely encased in silica.  相似文献   

12.
13.
The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size tendency. The apical elongation of the spicule proceeds by piling up cone-like structural units formed from silica. As a support of the assumption that in the extracellular space silicatein(-like) molecules exist that associate with the external surface of the respective spicule immunogold electron microscopic analyses were performed. With the primmorph system from Suberites domuncula we show that silicatein(-like) molecules assemble as string- and net-like arrangements around the spicules. At their tips the silicatein(-like) molecules are initially stacked and at a later stay also organized into net-like structures. Silicatein(-like) molecules have been extracted from the giant basal spicule of Monorhaphis. Applying the SDS–PAGE technique it could be shown that silicatein molecules associate to dimers and trimers. Higher complexes (filaments) are formed from silicatein(-like) molecules, as can be visualized by electron microscopy (SEM). In the presence of ortho-silicate these filaments become covered with 30–60 nm long small rod-like/cuboid particles of silica. From these data we conclude that the apical elongation of the spicules of Monorhaphis proceeds by piling up cone-like silica structural units, whose synthesis is mediated by silicatein(-like) molecules.  相似文献   

14.
The enzymatic-silicatein mediated formation of the skeletal elements, the spicules of siliceous sponges starts intracellularly and is completed extracellularly. With Suberites domuncula we show that the axial growth of the spicules proceeds in three phases: (I) formation of an axial canal; (II) evagination of a cell process into the axial canal, and (III) assembly of the axial filament composed of silicatein. During these phases the core part of the spicule is synthesized. Silicatein and its substrate silicate are stored in silicasomes, found both inside and outside of the cellular extension within the axial canal, as well as all around the spicule. The membranes of the silicasomes are interspersed by pores of ≈ 2 nm that are likely associated with aquaporin channels which are implicated in the hardening of the initial bio-silica products formed by silicatein. We can summarize the sequence of events that govern spicule formation as follows: differential GENETIC READOUT (of silicatein) → FRACTAL ASSOCIATION of the silicateins → EVAGINATION of cells by hydro-mechanical forces into the axial canal → and finally PROCESSIVE BIO-SILICA POLYCONDENSATION around the axial canal. We termed this process, occurring sequentially or in parallel, BIO-INORGANIC SELF-ORGANIZATION.  相似文献   

15.
BACKGROUND: During vertebrate gastrulation convergence and extension (CE), movements narrow and lengthen embryonic tissues. In Xenopus and zebrafish, a noncanonical Wnt signaling pathway constitutes the vertebrate counterpart to the Drosophila planar cell polarity pathway and regulates mediolateral cell polarization underlying CE. Despite the identification of several signaling molecules required for normal CE, the downstream transducers regulating individual cell behaviors driving CE are only beginning to be elucidated. Moreover, how defective mediolateral cell polarity impacts CE is not understood.RESULTS: Here, we show that overexpression of zebrafish dominant-negative Rho kinase 2 (dnRok2) disrupts CE without altering cell fates, phenocopying noncanonical Wnt signaling mutants. Moreover, Rho kinase 2 (Rok2) overexpression partially suppresses the slb/wnt11 gastrulation phenotype, and ectopic expression of noncanonical Wnts modulates Rok2 intracellular distribution. In addition, time-lapse analyses associate defective dorsal convergence movements with impaired cell elongation, mediolateral orientation, and consequently failure to migrate along straight paths. Transplantation experiments reveal that dnRok2 cells in wild-type hosts neither elongate nor orient their axes. In contrast, wild-type cells are able to elongate their cell bodies in dnRok2 hosts, even though they fail to orient their axes.CONCLUSIONS: During zebrafish gastrulation, Rok2 acts downstream of noncanonical Wnt11 signaling to mediate mediolateral cell elongation required for dorsal cell movement along straight paths. Furthermore, elongation and orientation of the cell body are independent properties that require both cell-autonomous and nonautonomous Rok2 function.  相似文献   

16.
Transforming growth factors beta (TGF-beta) are known negative regulators of lung development, and excessive TGF-beta production has been noted in pulmonary hypoplasia associated with lung fibrosis. Inhibitory Smad7 was recently identified to antagonize TGF-beta family signaling by interfering with the activation of TGF-beta signal-transducing Smad complexes. To investigate whether Smad7 can regulate TGF-beta-induced inhibition of lung morphogenesis, ectopic overexpression of Smad7 was introduced into embryonic mouse lungs in culture using a recombinant adenovirus containing Smad7 cDNA. Although exogenous TGF-beta efficiently reduced epithelial lung branching morphogenesis in control virus-infected lung culture, TGF-beta-induced branching inhibition was abolished after epithelial transfer of the Smad7 gene into lungs in culture. Smad7 also prevented TGF-beta-mediated down-regulation of surfactant protein C gene expression, a marker of bronchial epithelial differentiation, in cultured embryonic lungs. Moreover, we found that Smad7 transgene expression blocked Smad2 phosphorylation induced by exogenous TGF-beta ligand in lung culture, indicating that Smad7 exerts its inhibitory effect on both lung growth and epithelial cell differentiation through modulation of TGF-beta pathway-restricted Smad activity. However, the above anti-TGF-beta signal transduction effects were not observed in cultured embryonic lungs with Smad6 adenoviral gene transfer, suggesting that Smad7 and Smad6 differentially regulate TGF-beta signaling in developing lungs. Our data therefore provide direct evidence that Smad7, but not Smad6, prevents TGF-beta-mediated inhibition of both lung branching morphogenesis and cytodifferentiation, establishing the mechanistic basis for Smad7 as a novel target to ameliorate aberrant TGF-beta signaling during lung development, injury, and repair.  相似文献   

17.
Thirty-eight specimens belonging to four genera and 15 species of the nudibranch family Phyllidiidae were examined to investigate whether the morphology of their integumentary calcareous spicules and/or the occurrence of the spicules within the regions of the body could be used to distinguish genera and species. The spicules were studied separately from five regions of the body of each specimen—the foot, gills, mantle, dorsal pustules (or ridges in Reticulidia) and rhinophores. The mantle itself plus its pustules were found to possess the full complement of spicules in every individual. Four types of spicules were recorded overall—smooth diactines, centro-polytylote diactines, triactines and tetractines. Different regions of the body were found to possess different spicule types: (a) only smooth diactines in the gills, (b) both smooth diactines and triactines in the foot and (c) all of smooth diactines, centro-polytylote diactines and triactines in the mantle, dorsal pustules and the rhinophores. Among the genera, three types of spicules (smooth diactine, triactine, and tetractine) are present in Phyllidia, Phyllidiopsis and Reticulidia, but the form of the spicules is not diagnostic between these genera or between the constituent species. The fourth type of spicule (centro-polytylote diactine) is present exclusively in Phyllidiella, and is diagnostic for that genus. However, we failed to find any difference in spicule form, or composition, or location in the body between the three (closely related) species of Phyllidiella we investigated. Therefore, our key conclusion is that spicule morphology is an extremely important character to tell the genus Phyllidiella apart from all the other genera of the family, but it is not taxonomically informative at the level of species.  相似文献   

18.
We have recently shown that induction of biglycan (BGN) expression by transforming growth factor-beta1 (TGF-beta1) required sequential activation of both Smad and p38 mitogen-activated protein kinase signaling (Ungefroren, H., Lenschow, W., Chen, W.-B., and Kalthoff, H. (2003) J. Biol. Chem. 278, 11041-11049). Here, we have analyzed the receptors through which TGF-beta1 controls expression of BGN and GADD45beta, the latter of which is postulated to link early Smad signaling to delayed activation of p38. Ectopic expression of a dominant-negative mutant of the TGF-beta type II receptor in PANC-1 cells abrogated TGF-beta-induced BGN up-regulation. Similarly, inhibition of the TGF-beta type I receptor/ALK5 with either SB431542 or by enforced stable expression of a kinase-dead mutant greatly attenuated the TGF-beta effect on both BGN and GADD45beta expression in PANC-1 and MG-63 cells. The enhancing effect of ALK5 on TGF-beta-mediated GADD45beta and BGN expression and on GADD45beta promoter activity was also dependent on its ability to activate Smad signaling, because an ALK5 mutant defective in Smad activation (TbetaRImL45) but with an otherwise functional kinase domain failed to mediate these responses. The TGF-beta/ALK5 effect on p38 activation and BGN expression was mimicked by overexpression of GADD45beta alone (in the absence of TGF-beta stimulation) and suppressed upon antisense inhibition of GADD45beta expression. These results show that TGF-beta induces BGN expression through (the Smad-activating function of) ALK5 and GADD45beta and suggest that the sensitivity of MyD118 to activation by TGF-beta, which varies between tissues, ultimately determines the strength of the TGF-beta effect on BGN.  相似文献   

19.
20.
The larval skeleton of sea urchin embryos is formed by primary mesenchyme cells (PMCs). Thereafter, the larvae start feeding and additional arms develop. An adult rudiment that contains spines, tube feet, tests, and other parts of the adult body is formed in the eight-armed larva. The cellular mechanism of the later skeletogenesis and the lineage of the adult skeletogenic cells are not known. In this study, the morphogenesis of larval and adult skeletons during larval development of the sea urchin Hemicentrotus pulcherrimus was investigated by immunostaining cells with PMC-specific monoclonal antibodies, which are useful markers of skeletogenic cells. All spicules and the associated cells in the later larvae were stained with the antibodies. We could observe the initiation of skeletal morphogenesis at each developmental stage and visualize the cellular basis of skeleton formation in whole-mount embryos that possessed an intact morphology. There were some similarities between PMCs and the later skeletogenic cells. Both had a rounded shape with some filopodia, and the antigen expression started just before overt spicule formation. In the later-stage embryos, cells with filopodia and faint antigen expression were observed migrating in the blastocoel or aggregating in the presumptive location of new skeletogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号