首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the role of varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase during infection, a VZV mutant was generated in which two contiguous stop codons were introduced into ORF47, thus eliminating expression of the ORF47 kinase. ORF47 kinase was not essential for the growth of VZV in cultured cells, and the growth rate of the VZV mutant lacking ORF47 protein was indistinguishable from that of parental VZV. Nuclear extracts from cells infected with parental VZV contained several phosphorylated proteins which were not detected in extracts from cells infected with the ORF47 mutant. The herpes simplex virus type 1 (HSV-1) UL13 protein (the homolog of VZV ORF47 protein) is responsible for the posttranslational processing associated with phosphorylation of HSV-1 ICP22 (the homolog of VZV ORF63 protein). Immunoprecipitation of 32P-labeled proteins from cells infected with parental virus and those infected with ORF47 mutant virus yielded similar amounts of the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 (VZV gE), and the electrophoretic migration of these proteins was not affected by the lack of ORF47 kinase. Therefore, while the VZV ORF47 protein is capable of phosphorylating several cellular or viral proteins, it is not required for phosphorylation of the ORF63 protein in virus-infected cells.  相似文献   

2.
Poon AP  Roizman B 《Journal of virology》2005,79(13):8470-8479
The U(S)3 open reading frame of herpes simplex virus 1 (HSV-1) was reported to encode two mRNAs each directing the synthesis of the same protein. We report that the U(S)3 gene encodes two proteins. The predominant U(S)3 protein is made in wild-type HSV-1-infected cells. The truncated mRNA and a truncated protein designated U(S)3.5 and initiating from methionine 77 were preeminent in cells infected with a mutant lacking the gene encoding ICP22. Both the wild-type and truncated proteins also accumulated in cells transduced with a baculovirus carrying the entire U(S)3 open reading frame. The U(S)3.5 protein accumulating in cells infected with the mutant lacking the gene encoding ICP22 mediated the phosphorylation of histone deacetylase 1, a function of U(S)3 protein, but failed to block apoptosis of the infected cells. The U(S)3.5 and U(S)3 proteins differ with respect to the range of functions they exhibit.  相似文献   

3.
The U(L)15 gene of herpes simplex virus type 1 (HSV-1), like U(L)6, U(L)17, U(L)28, U(L)32, and U(L)33, is required for cleavage of concatameric DNA into genomic lengths and for packaging of cleaved genomes into preformed capsids. A previous study indicated that the U(L)15 gene encodes minor capsid proteins. In the present study, we have shown that the amino-terminal 509 amino acids of the U(L)15-encoded protein are sufficient to confer capsid association inasmuch as a carboxyl-terminally truncated form of the U(L)15-encoded protein with an M(r) of approximately 55,000 readily associated with capsids. This and previous studies have shown that, whereas three U(L)15-encoded proteins with apparent M(r)s of 83,000, 80,000, and 79,000 associated with wild-type B capsids, only the full-length 83,000-M(r) protein associated with B capsids purified from cells infected with viruses lacking functional U(L)6, U(L)17, U(L)28, U(L)32, and U(L)33 genes (B. Salmon and J. D. Baines, J. Virol. 72:3045-3050, 1998). Thus, all viral mutants that fail to cleave viral DNA into genomic-length molecules also fail to produce capsid-associated U(L)15 80,000- and 79,000-M(r) proteins. In contrast, the 80,000- and 79,000-M(r) proteins were readily detected in capsids purified from cells infected with a U(L)25 null virus that cleaves, but does not package, DNA. The conclusion that the amino terminus of the 83,000-M(r) protein is truncated to produce the 80,000- and/or 79,000-M(r) protein was supported by the following observations. (i) Whereas the C termini of the 83,000-, 80, 000-, and 79,000-M(r) proteins are identical, immunoreactivity dependent on the first 35 amino acids of the U(L)15 83,000-M(r) protein was absent from the 80,000- and 79,000-M(r) proteins. (ii) The 79,000- and 80,000-M(r) proteins were detected in capsids from cells infected with HSV-1(U(L)15M36V), an engineered virus encoding valine rather than methionine at codon 36. Thus, initiation at codon 36 is unlikely to account for production of the 80,000- and/or 79, 000-M(r) protein. Taken together, these data strongly suggest that capsid-associated U(L)15-encoded protein is proteolytically cleaved near the N terminus and indicate that this modification is tightly linked to maturation of genomic DNA.  相似文献   

4.
The U(L)15 gene of herpes simplex virus type 1 is composed of two exons. A mutation previously shown to preclude viral DNA cleavage and packaging at the nonpermissive temperature was identified as a change from a highly conserved serine to proline at codon 653. Separate viral mutants that contained stop codons inserted into exon I of U(L)15 (designated S648) or an insertion of the Escherichia coli lacZ gene into a truncated U(L)15 exon II [designated HSV-1(delta U(L)15ExII)] were constructed. Recombinant viruses derived from S648 and HSV-1(delta U(L)15ExII) and containing restored U(L)15 genes were constructed and designated S648R and HSV-1(delta U(L)15ExIIR), respectively. Unlike HSV-1(delta U(L)15ExIIR) and S648R, the viruses containing mutant U(L)15 genes failed to cleave and package viral DNA when propagated on noncomplementing cells. As revealed by electron microscopy, large numbers of enveloped capsids lacking viral DNA accumulated within the cytoplasm of cells infected with either S648 or HSV-1(delta U(L)15ExII) but not in cells infected with HSV-1(delta U(L)15ExIIR) or S648R. Thus, one function of the U(L)15 gene is to effectively prevent immature particles lacking DNA from exiting the nucleus by envelopment at the inner lamella of the nuclear membrane. Cells infected with HSV-1(delta U(L)15ExII) did not express the 75,000- or 35,000-apparent-Mr proteins previously shown to be products of the U(L)15 open reading frame, whereas the 35,000-apparent-Mr protein was readily detectable in cells infected with S648. We conclude that at least the 75,000-Mr protein is required for viral DNA cleavage and packaging and hypothesize that the 35,000-Mr protein is derived from translation of a novel mRNA located partially or completely within the second exon of U(L)15.  相似文献   

5.
Herpes simplex virus 1 causes a shutoff of cellular protein synthesis through the degradation of RNA that is mediated by the virion host shutoff (Vhs) protein encoded by the U(L)41 gene. We reported elsewhere that the Vhs-dependent degradation of RNA is selective, and we identified RNAs containing AU-rich elements (AREs) that were upregulated after infection but degraded by deadenylation and progressive 3'-to-5' degradation. We also identified upregulated RNAs that were not subject to Vhs-dependent degradation (A. Esclatine, B. Taddeo, L. Evans, and B. Roizman, Proc. Natl. Acad. Sci. USA 101:3603-3608, 2004). Among the latter was the RNA encoding tristetraprolin, a protein that binds AREs and is known to be associated with the degradation of RNAs containing AREs. Prompted by this observation, we examined the status of the ARE binding proteins tristetraprolin and TIA-1/TIAR in infected cells. We report that tristetraprolin was made and accumulated in the cytoplasm of wild-type virus-infected human foreskin fibroblasts as early as 2 h and in HEp-2 cells as early as 6 h after infection. The amounts of tristetraprolin that accumulated in the cytoplasm of cells infected with a mutant virus lacking U(L)41 were significantly lower than those in wild-type virus-infected cells. The localization of tristetraprolin was not modified in cells infected with a mutant lacking the gene encoding infected cell protein 4 (ICP4). TIA-1 and TIAR are two other proteins that are associated with the regulation of ARE-containing RNAs and that normally reside in nuclei. In infected cells, they started to accumulate in the cytoplasm after 6 h of infection. In cells infected with the mutant virus lacking U(L)41, TIA-1/TIAR accumulated in the cytoplasm in granular structures reminiscent of stress granules in a significant percentage of the cells. In addition, an antibody to tristetraprolin coprecipitated the Vhs protein from lysates of cells late in infection. The results indicate that the Vhs-dependent degradation of ARE-containing RNAs correlates with the transactivation, cytoplasmic accumulation, and persistence of tristetraprolin in infected cells.  相似文献   

6.
Yang K  Baines JD 《Journal of virology》2008,82(10):5021-5030
The portal vertex of herpesvirus capsids serves as the conduit through which DNA is inserted during the assembly process. In herpes simplex virus (HSV), the portal is composed of 12 copies of the U(L)6 gene product, pU(L)6. Previous results identified a domain in the major capsid scaffold protein, ICP35, required for interaction with pU(L)6 and its incorporation into capsids formed in vitro (G. P. Singer et al., J. Virol. 74:6838-6848, 2005). In the current studies, pU(L)6 and scaffold proteins were found to coimmunoprecipitate from lysates of both HSV-infected cells and mammalian cells expressing scaffold proteins and pU(L)6. The coimmunoprecipitation of pU(L)6 and scaffold proteins was precluded upon deletion of codons 143 to 151 within U(L)26.5, encoding ICP35. While wild-type scaffold proteins colocalized with pU(L)6 when transiently coexpressed as viewed by indirect immunofluorescence, deletion of U(L)26.5 codons 143 to 151 precluded this colocalization. A recombinant herpes simplex virus, vJB11, was generated that lacked U(L)26.5 codons 143 to 151. A virus derived from this mutant but bearing a restored U(L)26.5 was also generated. vJB11 was unable to cleave or package viral DNA, whereas the restored virus packaged DNA normally. vJB11 produced ample numbers of B capsids in infected cells, but these lacked normal levels of pU(L)6. The deletion in U(L)26.5 also rendered pU(L)6 resistant to detergent extraction from vJB11-infected cells. These data indicate that, as was observed in vitro, amino acids 143 to 151 of ICP35 are critical for (i) interaction between scaffold proteins and pU(L)6 and (ii) incorporation of the HSV portal into capsids.  相似文献   

7.
The herpes simplex virus type 1 (HSV-1) U(L)34 protein is likely a type II membrane protein that localizes within the nuclear membrane and is required for efficient envelopment of progeny virions at the nuclear envelope, whereas the U(L)31 gene product of HSV-1 is a nuclear matrix-associated phosphoprotein previously shown to interact with U(L)34 protein in HSV-1-infected cell lysates. For these studies, polyclonal antisera directed against purified fusion proteins containing U(L)31 protein fused to glutathione-S-transferase (U(L)31-GST) and U(L)34 protein fused to GST (U(L)34-GST) were demonstrated to specifically recognize the U(L)31 and U(L)34 proteins of approximately 34,000 and 30,000 Da, respectively. The U(L)31 and U(L)34 gene products colocalized in a smooth pattern throughout the nuclear rim of infected cells by 10 h postinfection. U(L)34 protein also accumulated in pleiomorphic cytoplasmic structures at early times and associated with an altered nuclear envelope late in infection. Localization of U(L)31 protein at the nuclear rim required the presence of U(L)34 protein, inasmuch as cells infected with a U(L)34 null mutant virus contained U(L)31 protein primarily in central intranuclear domains separate from the nuclear rim, and to a lesser extent in the cytoplasm. Conversely, localization of U(L)34 protein exclusively at the nuclear rim required the presence of the U(L)31 gene product, inasmuch as U(L)34 protein was detectable at the nuclear rim, in replication compartments, and in the cytoplasm of cells infected with a U(L)31 null virus. When transiently expressed in the absence of other viral factors, U(L)31 protein localized diffusely in the nucleoplasm, whereas U(L)34 protein localized primarily in the cytoplasm and at the nuclear rim. In contrast, coexpression of the U(L)31 and U(L)34 proteins was sufficient to target both proteins exclusively to the nuclear rim. The proteins were also shown to directly interact in vitro in the absence of other viral proteins. In cells infected with a virus lacking the U(S)3-encoded protein kinase, previously shown to phosphorylate the U(L)34 gene product, U(L)31 and U(L)34 proteins colocalized in small punctate areas that accumulated on the nuclear rim. Thus, U(S)3 kinase is required for even distribution of U(L)31 and U(L)34 proteins throughout the nuclear rim. Taken together with the similar phenotypes of the U(L)31 and U(L)34 deletion mutants, these data strongly suggest that the U(L)31 and U(L)34 proteins form a complex that accumulates at the nuclear membrane and plays an important role in nucleocapsid envelopment at the inner nuclear membrane.  相似文献   

8.
9.
The Rous sarcoma virus (RSV) leader RNA has three short open reading frames (ORF1 to ORF3) which are conserved in all avian sarcoma-leukosis retroviruses. Effects on virus propagation were determined following three types of alterations in the ORFs: (i) replacement of AUG initiation codons in order to prohibit ORF translation, (ii) alterations of the codon context around the AUG initiation codon to enhance translation of the normally silent ORF3, and (iii) elongation of the ORF coding sequences. Mutagenesis of the AUG codons for ORF1 and ORF2 (AUG1 and AUG2) singly or together delayed the onset of viral replication and cell transformation. In contrast, mutagenesis of AUG3 almost completely suppressed these viral activities. Mutagenesis of ORF3 to enhance its translation inhibited viral propagation. When the mutant ORF3 included an additional frameshift mutation which extended the ORF beyond the initiation site for the gag, gag-pol, and env proteins, host cells were initially transformed but died soon thereafter. Elongation of ORF1 from 7 to 62 codons led to the accumulation of transformation-defective virus with a delayed onset of replication. In contrast, viruses with elongation of ORF1 from 7 to 30 codons, ORF2 from 16 to 48 codons, or ORF3 from 9 to 64 codons, without any alterations in the AUG context, exhibited wild-type phenotypes. These results are consistent with a model that translation of the ORFs is necessary to facilitate virus production.  相似文献   

10.
11.
12.
Varicella-zoster virus (VZV) encodes five gene products that do not have homologs in herpes simplex virus. One of these genes, VZV open reading frame 32 (ORF32), is predicted to encode a protein of 16 kDa. VZV ORF32 protein was shown to be phosphorylated and located in the cytosol of virus-infected cells. Antibody to ORF32 protein immunoprecipitated 16- and 18-kDa phosphoproteins from VZV-infected cells. Since VZV encodes two protein kinases that might phosphorylate ORF32 protein, immunoprecipitations were performed with cells infected with VZV mutants unable to express either of the viral protein kinases. Cells infected with VZV unable to express the ORF66 protein kinase contained both the 16- and 18-kDa ORF32 phosphoproteins; however, cells infected with the VZV ORF47 protein kinase mutant showed only the 16-kDa ORF32 phosphoprotein. Treatment of [35S]methionine-labeled proteins with calf intestine alkaline phosphatase resulted in a decrease in size of the ORF32 proteins from 16 and 18 kDa to 15 and 17 kDa, respectively. VZV unable to express ORF32 protein replicated in human melanoma cells to titers similar to those seen with parental virus; however, VZV unable to express ORF32 was impaired for replication in U20S osteosarcoma cells. Thus, VZV ORF32 protein is posttranslationally modified by the ORF47 protein kinase. Since the VZV ORF47 protein kinase has recently been shown to be critical for replication in human fetal skin and lymphocytes, its ability to modify the ORF32 protein suggests that the latter protein may have a role for VZV replication in human tissues.  相似文献   

13.
The coding domain of the herpes simplex virus type 1 (HSV-1) alpha22 gene encodes two proteins, the 420-amino-acid infected-cell protein 22 (ICP22) and U(S)1.5, a protein colinear with the carboxyl-terminal domain of ICP22. In HSV-1-infected cells, ICP22 and U(S)1.5 are extensively modified by the U(L)13 and U(S)3 viral protein kinases. In this report, we show that in contrast to other viral proteins defined by their properties as alpha proteins, U(S)1.5 becomes detectable and accumulated only at late times after infection. Moreover, significantly more U(S)1.5 protein accumulated in cells infected with a mutant lacking the U(L)13 gene than in cells infected with wild-type virus. To define the role of viral protein kinases on the accumulation of U(S)1.5 protein, rabbit skin cells or Vero cells were exposed to recombinant baculoviruses that expressed U(S)1.5, U(L)13, or U(S)3 proteins under a human cytomegalovirus immediate-early promoter. The results were as follows. (i) Accumulation of the U(S)1.5 protein was reduced by concurrent expression of the U(L)13 protein kinase and augmented by concurrent expression of the U(S)3 protein kinase. The magnitude of the reduction or increase in the accumulation of the U(S)1.5 protein was cell type dependent. The effect of U(L)13 kinase appears to be specific inasmuch as it did not affect the accumulation of glycoprotein D in cells doubly infected by recombinant baculoviruses expressing these genes. (ii) The reduction in accumulation of the U(S)1.5 protein was partially due to proteasome-dependent degradation. (iii) Both U(S)1.5 and U(L)13 proteins activated caspase 3, indicative of programmed cell death. (iv) Concurrent expression of the U(S)3 protein kinase blocked activation of caspase 3. The results are concordant with those published elsewhere (J. Munger and B. Roizman, Proc. Natl. Acad. Sci. USA 98:10410-10415, 2001) that the U(S)3 protein kinase can block apoptosis by degradation or posttranslational modification of BAD.  相似文献   

14.

Background

Viruses have evolved to evade the host''s complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages.

Methodology/Principal Findings

Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation.

Conclusions/Significance

In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein.  相似文献   

15.
The herpes simplex virus 1 U(L)3 and U(L)4 open reading frames are expressed late in infection and are not essential for viral replication in cultured cells in vitro. An earlier report showed that the U(L)4 protein colocalizes with the products of the alpha22/U(S)1.5 genes in small nuclear dense bodies. Here we report that the U(L)3 protein also colocalized in these small nuclear dense bodies and the localization of U(L)3 and U(L)4 proteins in these bodies required the presence of alpha22/U(S)1.5 genes. In cells infected with a mutant lacking intact alpha22/U(S)1.5 genes, U(L)3 was diffused throughout the nucleus even though the overall accumulation of the gamma2 U(L)3 protein was decreased. The results suggest that ICP22 acts both as a regulator of U(L)3 accumulation and as the structural component and anchor of these small dense nuclear bodies.  相似文献   

16.
Earlier studies have shown that the d120 mutant of herpes simplex virus 1, which lacks both copies of the alpha4 gene, induces caspase-3-dependent apoptosis in HEp-2 cells. Apoptosis was also induced by the alpha4 rescuant but was blocked by the complementation of rescuant with a DNA fragment encoding the U(S)3 protein kinase (R. Leopardi and B. Roizman, Proc. Natl. Acad. Sci. USA 93:9583-9587, 1996, and R. Leopardi, C. Van Sant, and B. Roizman, Proc. Natl. Acad. Sci. USA 94:7891-7896, 1997). To investigate its role in the apoptotic cascade, the U(S)3 open reading frame was cloned into a baculovirus (Bac-U(S)3) under the control of the human cytomegalovirus immediate-early promoter. We report the following. (i) Bac-U(S)3 blocks processing of procaspase-3 to active caspase. Procaspase-3 levels remained unaltered if superinfected with Bac-U(S)3 at 3 h after d120 mutant infection, but significant amounts of procaspase-3 remained in cells superinfected with Bac-Us3 at 9 h postinfection with d120 mutant. (ii) The U(S)3 protein kinase blocks the proapoptotic cascade upstream of mitochondrial involvement inasmuch as Bac-U(S)3 blocks release of cytochrome c in cells infected with the d120 mutant. (iii) Concurrent infection of HEp-2 cells with Bac-U(S)3 and the d120 mutant did not alter the pattern of accumulation or processing of ICP0, -22, or -27, and therefore U(S)3 does not appear to block apoptosis by targeting these proteins.  相似文献   

17.
The middle (M) RNA segment of Rift Valley fever virus (RVFV) encodes four proteins: the major viral glycoproteins G2 and G1, a 14-kilodalton (kDa) protein, and a 78-kDa protein. These proteins are derived from a single large open reading frame (ORF) present in the virus-complementary M-segment mRNA. We used recombinant vaccinia viruses in which sequences representing the M-segment ORF were engineered as a surrogate system to study phlebovirus protein expression. To investigate the translational initiation codon requirements for synthesis of these proteins, we constructed a series of vaccinia virus recombinants containing specific sequence changes which eliminated select ATG codons found in the region of the ORF preceding the mature glycoprotein-coding sequences (the preglycoprotein region). Examination of phleboviral proteins synthesized in cells infected with these vaccinia virus recombinants clearly showed that the first ATG of the ORF was required for the production of the 78-kDa protein, while synthesis of the 14-kDa protein was absolutely dependent on the second in-phase ATG codon. Efficient biosynthesis of glycoprotein G2 was shown to depend on one or more ATG codons within the preglycoprotein region, but not the first one of the ORF. Synthesis of about one-half of the total glycoprotein G1 was affected by the amino acid changes that eliminated ATG codons, while production of the remainder appeared to be independent of all ATG codons in the preglycoprotein region. These data indicated that the means for glycoprotein G1 biosynthesis was distinct from those of the other three M-segment gene products. The results presented herein suggest that a surprisingly complex expression strategy is employed by the RVFV M segment. Although the full nature of the mechanisms involved in the biogenesis of the four RVFV M-segment proteins remains unclear, it does involve the use of at least two (ATG codons 1 and 2), and likely more, distinct translation start sites within the same ORF to produce its complete complement of gene products.  相似文献   

18.
Norwalk virus open reading frame 3 encodes a minor structural protein   总被引:12,自引:0,他引:12       下载免费PDF全文
Norwalk virus (NV) is a causative agent of acute epidemic nonbacterial gastroenteritis in humans. The inability to cultivate NV has required the use of molecular techniques to examine the genome organization and functions of the viral proteins. The function of the NV protein encoded by open reading frame 3 (ORF 3) has been unknown. In this paper, we report the characterization of the NV ORF 3 protein expressed in a cell-free translation system and in insect cells and show its association with recombinant virus-like particles (VLPs) and NV virions. Expression of the ORF 3 coding region in rabbit reticulocyte lysates resulted in the production of a single protein with an apparent molecular weight of 23,000 (23K protein), which is not modified by N-linked glycosylation. The ORF 3 protein was expressed in insect cells by using two different baculovirus recombinants; one recombinant contained the entire 3' end of the genome beginning with the ORF 2 coding sequences (ORFs 2+3), and the second recombinant contained ORF 3 alone. Expression from the construct containing both ORF 2 and ORF 3 resulted in the expression of a single protein (23K protein) detected by Western blot analysis with ORF 3-specific peptide antisera. However, expression from a construct containing only the ORF 3 coding sequences resulted in the production of multiple forms of the ORF 3 protein ranging in size from 23,000 to 35,000. Indirect-immunofluorescence studies using an ORF 3 peptide antiserum showed that the ORF 3 protein is localized to the cytoplasm of infected insect cells. The 23K ORF 3 protein was consistently associated with recombinant VLPs purified from the media of insect cells infected with a baculovirus recombinant containing the entire 3' end of the NV genome. Western blot analysis of NV purified from the stools of NV-infected volunteers revealed the presence of a 35K protein as well as multiple higher-molecular-weight bands specifically recognized by an ORF 3 peptide antiserum. These results indicate that the ORF 3 protein is a minor structural protein of the virion.  相似文献   

19.
Previous studies have indicated that the U(L)6, U(L)15, U(L)17, U(L)28, U(L)32, and U(L)33 genes are required for the cleavage and packaging of herpes simplex viral DNA. To identify proteins that interact with the U(L)28-encoded DNA binding protein of herpes simplex virus type 1 (HSV-1), a previously undescribed rabbit polyclonal antibody directed against the U(L)28 protein fused to glutathione S-transferase was used to immunopurify U(L)28 and the proteins with which it associated. It was found that the antibody specifically coimmunoprecipitated proteins encoded by the genes U(L)28, U(L)15, and U(L)33 from lysates of both HEp-2 cells infected with HSV-1(F) and insect cells infected with recombinant baculoviruses expressing these three proteins. In reciprocal reactions, antibodies directed against the U(L)15- or U(L)33-encoded proteins also coimmunoprecipitated the U(L)28 protein. The coimmunoprecipitation of the three proteins from HSV-infected cells confirms earlier reports of an association between the U(L)28 and U(L)15 proteins and represents the first evidence of the involvement of the U(L)33 protein in this complex.  相似文献   

20.
Herpes simplex virus strain MPdk(-) multiplies in HEp-2 cells, but not in dog kidney (DK) cells. Strain MPdk(+)sp, a multistep mutant of MPdk(-), multiplies in both HEp-2 and DK cells. Stabilized lysates of productively infected cells yield three macromolecular aggregates of viral deoxyribonucleic acid and protein banding in CsCl gradients at densities of 1.285 g/cm(3) (alpha), 1.325 g/cm(3) (beta), and 1.37 to 1.45 g/cm(3) (gamma). Similar lysates from abortively infected cells yield only the beta and gamma bands. Electron microscopic examination revealed that (i) the alpha band contained enveloped nucleocapsids, whereas the beta band contained naked nucleocapsids and particles tentatively identified as internal components of the nucleocapsids, and that (ii) the enveloped virions and reduplication of cellular membranes observed in thin sections of productively infected cells were absent from abortively infected cells. Studies of the surface antigens of infected cells in a cytolytic system described previously revealed that abortively infected cells contained approximately 10-fold less virus-induced surface antigen than did productively infected cells. From these and other data published previously, we concluded that infectious MPdk(-) virions are not made in DK cells because (i) functional viral products necessary for the envelopment of the nucleocapsid are not made, and (ii) capsid proteins and some nonstructural products specified by the virus malfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号