首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interest in saliva as a diagnostic fluid for monitoring general health and for early diagnosis of disease has increased in the last few years. In particular, efforts have focused on the generation of protein maps of saliva using advanced proteomics technology. Surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) is a novel high throughput and extremely sensitive proteomic approach that allows protein expression profiling of large sets of complex biological specimens. In this study, large scale profiling of salivary proteins and peptides, ranging from 2 to 100kDa was demonstrated using SELDI-TOF-MS. Various methodological aspects and pre-analytical variables were analysed with respect to their effects on saliva SELDI-TOF-MS profiling. Results show that chip surface type and sample type (unstimulated versus stimulated) critically affect the amount and composition of detected salivary proteins. Factors that influenced normal saliva protein profiling were matrix composition, sample dilution and binding buffer properties. Delayed processing time experiments show certain new peptides evolving 3h post-saliva donation, and quantitative analyses indicate relative intensity of other proteins and peptides changing with time. The addition of protease inhibitors partly counteracted the destabilization of certain protein/peptide mass spectra over time suggesting that some proteins in saliva are subject to digestion by intrinsic salivary proteases. SELDI-TOF-MS profiles also changed by varying storage time and storage temperature whereas centrifugation speed and freeze-thaw cycles had minimal impact. In conclusion, SELDI-TOF-MS offers a high throughput platform for saliva protein and peptide profiling, however, (pre-)analytical conditions must be taken into account for valid interpretation of the acquired data.  相似文献   

2.
Sj?gren's syndrome (pSS) is a systemic disease that affects salivary glands directly, and is therefore expected to influence the composition of human whole saliva (WS) fluid. The aim of this study was to characterize the WS proteins of pSS patients using a proteomic approach to assess a valid procedure to examine the global changes of the salivary protein profiles in connective tissue disorders. The WS proteins expressed in patients affected by pSS and healthy volunteers were analyzed using the 2-DE technique. The WS protein pattern was altered in pSS patients compared to controls, with a decrease in some of the typical salivary proteins. Particularly, a remarkable alteration of carbonic anhydrase VI was observed. Moreover, a comparison of WS protein profile of pSS patients with the one obtained from controls revealed a set of differentially expressed proteins. These proteins were related to acute and chronic inflammation while some others were involved in oxidative stress injury. These findings are in line with the systemic immuno-inflammatory aspects of pSS and open the possibility for a systematic search of diagnostic biomarkers and targets for therapeutic intervention in pSS.  相似文献   

3.
Saliva is a complex multifunctional fluid that bathes the oral cavity to assist in soft and hard tissue maintenance, lubrication, buffering, defense against microbes, and initiating digestion of foods. It has been extensively characterized in humans but its protein composition in dogs remains poorly characterized, yet saliva composition could explain (patho) physiological differences between individuals, breeds and with humans. This pilot discovery study aimed to characterize canine saliva from two breeds, Labrador retrievers and Beagles, and to compare this with human saliva using quantitative mass spectrometry. The analysis demonstrated considerable inter‐individual variation and difference between breeds; however these were small in comparison to the differences between species. Functional mapping suggested roles of detected proteins similar to those found in human saliva with the exception of the initiation of digestion as salivary amylase was lacking or at very low abundance in canine saliva samples. Many potential anti‐microbial proteins were detected agreeing with the notion that the oral cavity is under continuous microbial challenge.  相似文献   

4.
An enzyme was purified from human parotid saliva that can cleave a single arginine-glycine peptide bond between residues 106 and 107 in human salivary proline-rich protein C, hereby giving rise to another proline-rich protein A, which is also found in saliva. The enzyme was purified 2400-fold. It cleaved salivary protein C at the rate of 59 micrograms of protein/h per microgram of enzyme and had amino acid composition, molecular weight and inhibition characteristics similar to those reported for human salivary kallikrein. Confirmation that the enzyme was kallikrein was demonstrated by its kinin-generating ability. Histochemical evidence indicates that a post-synthetic cleavage of protein C by kallikrein would have to take place during passage of saliva through the secretory ducts. In secreted saliva, cleavage of salivary protein C can only be observed after 72 h incubation. In addition, there is no effect of salivary flow rate on the relative amounts of proteins A and C in saliva. On the basis of the experimental observations, it is proposed that in vivo it is unlikely that kallikrein secreted from ductal cells plays a significant role in converting protein C into protein A.  相似文献   

5.
Human saliva harbours proteins of clinical relevance and about 30% of blood proteins are also present in saliva. This highlights that saliva can be used for clinical applications just as urine or blood. However, the translation of salivary biomarker discoveries into clinical settings is hampered by the dynamics and complexity of the salivary proteome. This review focuses on the current status of technological developments and achievements relating to approaches for unravelling the human salivary proteome. We discuss the dynamics of the salivary proteome, as well as the importance of sample preparation and processing techniques and their influence on downstream protein applications; post-translational modifications of salivary proteome and protein: protein interactions. In addition, we describe possible enrichment strategies for discerning post-translational modifications of salivary proteins, the potential utility of selected-reaction-monitoring techniques for biomarker discovery and validation, limitations to proteomics and the biomarker challenge and future perspectives. In summary, we provide recommendations for practical saliva sampling, processing and storage conditions to increase the quality of future studies in an emerging field of saliva clinical proteomics. We propose that the advent of technologies allowing sensitive and high throughput proteome-wide analyses, coupled to well-controlled study design, will allow saliva to enter clinical practice as an alternative to blood-based methods due to its simplistic nature of sampling, non-invasiveness, easy of collection and multiple collections by untrained professionals and cost-effective advantages.  相似文献   

6.
Lepidopteran larvae secrete saliva on plant tissues during feeding. Components in the saliva may aid in food digestion, whereas other components are recognized by plants as cues to elicit defense responses. Despite the ecological and economical importance of these plant-feeding insects, knowledge of their saliva composition is limited to a few species. In this study, we identified the salivary proteins of larvae of the fall armyworm (FAW), Spodoptera frugiperda; determined qualitative and quantitative differences in the salivary proteome of the two host races—corn and rice strains—of this insect; and identified changes in total protein concentration and relative protein abundance in the saliva of FAW larvae associated with different host plants. Quantitative proteomic analyses were performed using labeling with isobaric tags for relative and absolute quantification followed by liquid chromatography-tandem mass spectrometry. In total, 98 proteins were identified (>99% confidence) in the FAW saliva. These proteins were further categorized into five functional groups: proteins potentially involved in (1) plant defense regulation, (2) herbivore offense, (3) insect immunity, (4) detoxification, (5) digestion, and (6) other functions. Moreover, there were differences in the salivary proteome between the FAW strains that were identified by label-free proteomic analyses. Thirteen differentially identified proteins were present in each strain. There were also differences in the relative abundance of eleven salivary proteins between the two FAW host strains as well as differences within each strain associated with different diets. The total salivary protein concentration was also different for the two strains reared on different host plants. Based on these results, we conclude that the FAW saliva contains a complex mixture of proteins involved in different functions that are specific for each strain and its composition can change plastically in response to diet type.  相似文献   

7.
Dried saliva spot sampling is a minimally invasive technique for the spatial mapping of salivary protein distribution in the oral cavity. In conjunction with untargeted nano‐flow liquid chromatography tandem mass spectrometry (nanoLC–MS/MS) analysis, DSS is used to compare the proteomes secreted by unstimulated parotid and submandibular/sublingual salivary glands. Two hundred and twenty proteins show a statistically significant association with parotid gland secretion, while 30 proteins are at least tenfold more abundant in the submandibular/sublingual glands. Protein identifications and label‐free quantifications are highly reproducible across the paired glands on three consecutive days, enabling to establish the core proteome of glandular secretions categorized into eight salivary protein groups according to their biological functions. The data suggest that the relative contributions of the salivary glands fine‐tune the biological activity of human saliva via medium‐abundant proteins. A number of biomarker candidates for Sjögren's syndrome are observed among the gland‐specifically expressed proteins, which indicates that glandular origin is an important factor to consider in salivary biomarker discovery.  相似文献   

8.
It has been suggested that proteins serve as major salivary buffers below pH?5. It remains unclear, however, which salivary proteins are responsible for these buffering properties. The aim of this pilot study was to evaluate the correlation between salivary concentration of total protein, amylase, mucin, immunoglobulin A (IgA), albumin and total salivary protein buffering capacity at a pH range of 4–5. In addition, the buffering capacity and the number of carboxylic acid moieties of single proteins were assessed. Stimulated saliva samples were collected at 9:00, 13:00 and 17:00 from 4 healthy volunteers on 3 successive days. The buffering capacities were measured for total salivary protein or for specific proteins. Also, the concentration of total protein, amylase, mucin, IgA and albumin were analysed. Within the limits of the current study, it was found that salivary protein buffering capacity was highly positively correlated with total protein, amylase and IgA concentrations. A weak correlation was observed for both albumin and mucin individually. Furthermore, the results suggest that amylase contributed to 35% of the salivary protein buffering capacity in the pH range of 4–5.  相似文献   

9.
The tsetse fly (Glossina spp.) is an obligate blood-sucking insect that transmits different human-pathogenic and livestock threatening trypanosome species in Africa. To obtain more insight in the tsetse salivary function, some general aspects of the tsetse fly saliva and its composition were studied. Direct pH and protein content measurements revealed a moderately alkaline (pH approximately 8.0) salivary environment with approximately 4.3 microg soluble proteins per gland and a constant representation of the major saliva proteins throughout the blood-feeding cycle. Although major salivary genes are constitutively expressed, upregulation of salivary protein synthesis within 48 h after the blood meal ensures complete protein replenishment from day 3 onwards. Screening of a non-normalised Glossina morsitans morsitans lambdagt11 salivary gland expression library with serum from a saliva-immunized rabbit identified three full-length cDNAs encoding for novel salivary proteins with yet unknown functions: a 8.3 kDa glycine/glutamate-rich protein (G. morsitans morsitans salivary gland protein Gmmsgp1), a 12.0 kDa proline-rich protein (Gmmsgp2), and a 97.4 kDa protein composed of a metallophosphoesterase/5'nucleotidase region with a glutamate/aspartate/asparagines-rich region (Gmmsgp3).  相似文献   

10.
Objective: The aim of the present study was to analyse the characteristics of salivary production and its composition in individuals with burning mouth syndrome (BMS). Study Design: Salivary flow rate, concentrations of potassium, iron, chloride, thiocyanate, magnesium, calcium, phosphorus, glucose, total protein and urea, as well as the expression profile of salivary proteins were analysed by SDS‐PAGE. Results: The mean salivary flow rate among control patients was lower than that of BMS patients. Chloride, phosphorus and potassium levels were elevated in patients with BMS (p = 0.041, 0.001 and 0.034, respectively). Total salivary protein concentration was reduced in individuals with BMS (p = 0.223). Analysis of the expression of salivary proteins by Coomassie blue SDS‐PAGE revealed a lower expression of low molecular weight proteins in individuals with BMS compared to healthy controls. Conclusions: These results indicate that the identification and characterisation of low molecular weight salivary proteins in BMS may be important in understanding BMS pathogenesis, thus contributing to its diagnosis and treatment.  相似文献   

11.
We have isolated the salivary proteins of the larva of the harlequin fly Chironomus tentans, and characterized its constituents by gel electrophoresis and immunological techniques. The detailed composition of saliva from individual animals is shown to be very variable, but four main protein groups can be defined. The largest, Fraction A, comprises up to five species, with molecular weights of between 820,000 and 700,000 Daltons. It includes at least two distinct antigenic species. This finding is discussed in the context of the known heterogeneity of the 75S RNA fraction which is transcribed in the Balbiani rings 1 and 2. — The other prominent protein classes in isolated saliva range in size from 230,000 down to less than 20,000 Daltons. — We have also employed antiserum against salivary proteins to investigate the products of in vitro translation of salivary gland RNA in the rabbit reticulocyte lysate system. A broad spectrum of polypeptide species is obtained which are immunologically related to salivary components, including species of over 300,000 Daltons. These latter are interpreted as unfinished Fraction A polypeptides resulting from incomplete translation of 75S RNA from BR1 and BR2. Evidence is presented to demonstrate that other salivary proteins, apart from Fraction A, are faithfully translated in the reticulocyte lysate.  相似文献   

12.
The proteome of human saliva can be considered as being essentially completed. Diagnostic markers for a number of diseases have been identified among salivary proteins and peptides, taking advantage of saliva as an easy-to-obtain biological fluid. Yet, the majority of disease markers identified so far are serum components and not intrinsic proteins produced by the salivary glands. Furthermore, despite the fact that saliva is essential for protecting the oral integuments and dentition, little progress has been made in finding risk predictors in the salivary proteome for dental caries or periodontal disease. Since salivary proteins, and in particular the attached glycans, play an important role in interactions with the microbial world, the salivary glycoproteome and other post-translational modifications of salivary proteins need to be studied. Risk markers for microbial diseases, including dental caries, are likely to be discovered among the highly glycosylated major protein species in saliva. This review will attempt to raise new ideas and also point to under-researched areas that may hold promise for future applicability in oral diagnostics and prediction of oral disease.  相似文献   

13.

Background

In recent years, differential analysis of proteins from human saliva, i.e., proteomic analysis, has received much attention mainly due to its unstressful sampling and its great potential for biomarker research. It is widely considered that saliva is a highly stable medium for proteins thanks to a large amount of antiprotease agents, even at ambient and physiological temperatures.

Objective

To find the best protocol for the handling of samples, we have investigated the stability of saliva proteins stored at different temperatures (from ?80 to 20°C) by one- and two-dimensional electrophoresis.

Results

At 20°C, no major changes were observed on protein one-dimensional profiles following 1 day of storage; however, between 7 days and 30 days, the native alpha-amylase band decreased slightly to give several bands with molecular weight between 35 and 25 kDa. The same phenomenon appeared after 30 days of storage at 4°C. Two-dimensional analysis of salivary maps revealed degradation from day 7 of several protein groups for samples stored at 20°C.

Conclusion

All these findings have to be carefully considered when saliva is collected for clinical proteomic analysis. We can conclude that, to maintain the optimum stability of saliva proteins, saliva samples should be collected on ice followed by the addition of protease inhibitor cocktail, centrifuged to remove insoluble material, and stored at ?20 or ?80°C.  相似文献   

14.
15.
Radiation caries have been reported to be correlated with radiotherapy-induced destruction of salivary function and changes in oral microbiota. There have been no published reports detailing patients who have remained radiation caries-free following radiotherapy for nasopharyngeal carcinoma. The aim of this study was to investigate the relationship between salivary function, oral microbiota and the absence of radiation caries. Twelve radiation caries-free patients and nine patients exhibiting radiation caries following irradiated nasopharyngeal carcinoma were selected. V40, the dose at which the volume of the contralateral parotid gland receives more than 40 Gy, was recorded. Stimulated saliva flow rate, pH values and buffering capacity were examined to assess salivary function. Stimulated saliva was used for molecular profiling by Denaturing Gradient Gel Electrophoresis. Mutans streptococci and Lactobacilli in saliva were also cultivated. There were no significant differences in V40 between radiation caries-free individuals and those with radiation caries. Compared with normal values, the radiation caries-free group had significantly decreased simulated saliva flow rate, while there were no significant differences in the saliva pH value and buffering capacity. Similar results were observed in the radiation caries group. There was no statistical difference in microbial diversity, composition and log CFU counts in cultivation from the radiation caries-free group and the radiation caries group. Eleven genera were detected in these two groups, among which Streptococcus spp. and Neisseria spp. had the highest distribution. Our results suggest that changes in salivary function and in salivary microbiota do not explain the absence of radiation caries in radiation caries-free individuals.  相似文献   

16.

Objectives

Saliva is a biological fluid suitable for biomarker analysis, and differences in the salivary microbiota in oral health and disease have been reported. For such comparative analyses, time of sampling is critical since the bacterial composition may vary throughout the day, i.e., diurnal variation. The purpose of this study is to compare the salivary microbiome over time to determine the optimal time for sampling.

Design

Stimulated saliva samples were collected from 5 orally healthy individuals in 4 h intervals for 24 h, and collection was repeated 7 days later (number of samples per person, n = 12, total number of samples, n = 60). Salivary microbiota was analyzed using the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS), and statistical analysis was performed using the Kruskal-Wallis test with Benjamini-Hochberg’s correction for multiple comparisons, cluster analysis, principal component analysis and correspondence analysis.

Results

From a total of 60 saliva samples, 477 probe targets were collectively identified with a mean number of probes per sample of 207 (range: 153–307). Little or no variation in microbial profiles within subjects was observed over time.

Conclusions

Although there was considerable variation between subjects, microbial profiles within subjects were stable throughout a 24 hour period and after 1 week. Since there is little or no evidence of diurnal variation of the salivary microbiome, time of sampling of saliva is not critical for perturbation or other microbial studies.  相似文献   

17.
In ruminants, different functions have been ascribed to the different salivary glands according to the feeding type. In this context, possible adaptations of salivary functions were investigated regarding the secretion of various proteins by different types of salivary glands. To yield uncontaminated parotid saliva in large quantities, a non-surgical method has been developed. Parotid gland secretions were collected via endoscopic placement of guide wires into each parotid duct, which were subsequently used for placement of collection catheters. Salivary flow was stimulated by intra-glandular administration of the parasympathomimetic compound pilocarpine-hydrochloride into the parotid gland. Mixed saliva (excluding parotid saliva) was collected into sterile tubes by normal outflow during the sampling of parotid saliva. The total flow volume, flow rate and the content of proteins as well as of several ions (Na+, K+, Ca2+, inorganic phosphate) of both types of saliva were measured in sheep, fallow deer and roe deer. Roe deer secreted the highest amount of total salivary proteins relative to body mass [mg/kg body mass] and the highest relative volume [ml/10 min/kg body mass], both in parotid and mixed saliva, of all ruminant species examined. Additionally, the protein profile and the tannin-binding properties of parotid and mixed saliva in roe deer were investigated. Parotid saliva bound almost twice as much tannin as mixed saliva, underlining the importance of yielding uncontaminated parotid saliva for tannin-binding studies. Accepted: 6 January 1998  相似文献   

18.
To determine the extent of clonal involvement of the secretory immune system and the origin of salivary immunoglobulins (Ig) in monoclonal gammopathy patients, saliva and serum samples were collected from five affected individuals (two IgA myelomas, one IgG myeloma, one IgG benign monoclonal gammopathy, and one IgM lymphoma) and were assayed for the presence of monoclonal Ig. Purified polyclonal or monoclonal anti-idiotype (Id) antibodies were prepared against each of the isolated serum paraproteins. In all five individuals, the patient saliva samples inhibited the binding of 125I-labeled homologous Ig to the corresponding anti-Id antibodies, but normal saliva did not. The concentration of Id in patients' saliva varied from 1 to 400 micrograms/ml; i.e., 0.004 to 1.0% of the corresponding serum values. Saliva of a lymphoma patient whose IgM kappa protein exhibited rheumatoid factor (RF) activity also contained RF. The salivary Id-bearing molecules were found to have the same Ig isotype as the serum paraproteins. The myeloma IgA represented a minor component (0.4 and 3.9%) of the total salivary IgA. The salivary IgA myeloma proteins were associated at least in part with secretory component, but the salivary IgG paraproteins were not. In an IgA myeloma patient, a minority (17%) of the IgA+ plasma cells found in the lacrymal gland biopsy specimen were Id+, whereas the great majority (98%) of bone marrow IgA plasma cells were Id+. The results suggest active transport rather than passive transudation of myeloma IgA into the patients' saliva, and the integrity of the secretory immune system was not compromised by the neoplastic process.  相似文献   

19.
Sj?gren’s syndrome (SS) is a chronic, progressive autoimmune disease primarily affecting women. Diagnosis of SS requires an invasive salivary gland tissue biopsy and a long delay from the start of the symptoms to final diagnosis has been frequently observed. In this study,we aim to identify salivary autoantibody biomarkers for primary SS (pSS) using a protein microarray approach. Immune-response protoarrays were used to profile saliva autoantibodies from patients with pSS (n = 514), patients with systemic lupus erythematosus(SLE, n = 513), and healthy control subjects (n = 513). We identified 24 potential autoantibody biomarkers that can discriminate patients with pSS from both patients with SLE and healthy individuals. Four saliva autoantibody biomarkers, anti-transglutaminase, anti-histone, anti-SSA, and anti-SSB, were further tested in independent pSS (n = 534), SLE (n = 534), and healthy control (n = 534) subjects and all were successfully validated with ELISA. This study has demonstrated the potential of a high-throughput protein microarray approach for the discovery of autoantibody biomarkers. The identified saliva autoantibody biomarkers may lead to a clinical tool for simple, noninvasive detection of pSS at low cost.  相似文献   

20.
In-depth knowledge of bodily fluid phosphoproteomes, such as whole saliva, is limited. To better understand the whole saliva phosphoproteome, we generated a large-scale catalog of phosphorylated proteins. To circumvent the wide dynamic range of phosphoprotein abundance in whole saliva, we combined dynamic range compression using hexapeptide beads, strong cation exchange HPLC peptide fractionation, and immobilized metal affinity chromatography prior to mass spectrometry. In total, 217 unique phosphopeptides sites were identified representing 85 distinct phosphoproteins at 2.3% global FDR. From these peptides, 129 distinct phosphorylation sites were identified of which 57 were previously known, but only 11 of which had been previously identified in whole saliva. Cellular localization analysis revealed salivary phosphoproteins had a distribution similar to all known salivary proteins, but with less relative representation in "extracellular" and "plasma membrane" categories compared to salivary glycoproteins. Sequence alignment showed that phosphorylation occurred at acidic-directed kinase, proline-directed, and basophilic motifs. This differs from plasma phosphoproteins, which predominantly occur at Golgi casein kinase recognized sequences. Collectively, these results suggest diverse functions for salivary phosphoproteins and multiple kinases involved in their processing and secretion. In all, this study should lay groundwork for future elucidation of the functions of salivary protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号