首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
G W Zhou  P S Ho 《Biochemistry》1990,29(31):7229-7236
Methylation of cytosine bases at the C5 position has been known to stabilize Z-DNA. We had previously predicted from calculations of solvent-accessible surfaces that the methyl group at the same position of thymine has a destabilizing effect on Z-DNA. In the current studies, the sequence d(m5CGUAm5CG) has been crystallized and its structure solved as Z-DNA to 1.3-A resolution. A well-defined octahedral hexaaquomagnesium complex was observed to bridge the O4 oxygens of the adjacent uridine bases at the major groove surface, and four well-structured water molecules were found in the minor groove crevice at the d(UA) dinucleotide. These solvent interactions were not observed in the previously published Z-DNA structure of the analogous d(m5CGTAm5CG) sequence. A comparison of the thymine and uridine structures supports our prediction that demethylation of thymine bases helps to stabilize Z-DNA. A comparison of this d(UA)-containing Z-DNA structure with the analogous d(TA) structure shows that access of the O4 position is hindered by the C5 methyl of thymine due to steric and hydrophobic inhibition. In the absence of the methyl group, a magnesium-water complex binds to and slightly affects the structure of the Z-DNA major groove surface. This perturbation of the solvent structure at the major groove surface is translated into a much larger 1.41-A widening of the minor groove crevice, thereby allowing the specific binding of two water molecules at well-defined sites of each internal d(UA) base pair. Possible mechanisms by which modifications at the major groove surface of Z-DNA can affect the solvent properties of the minor groove crevice are discussed.  相似文献   

2.
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation.  相似文献   

3.
The conformation of the self-complimentary DNA dodecamer d(br5CGbr5CGAATTbr5CGbr5CG) has been investigated in a variety of salt and solvent conditions by one and two-dimensional 1H NMR. In low salt aqueous solutions, the molecule forms a regular B-DNA structure similar to the unmodified dodecamer. However, in aqueous solution containing high salt concentration and methanol, the dodecamer adopts a structure in which the br5CGbr5CG ends of the molecule are in a Z-DNA like conformation and the AATT region is neither standard B-DNA nor Z-DNA. The implications of these results for the structure of junctions between B and Z-DNA and the sequence specificity of Z-DNA are discussed.  相似文献   

4.
B Pan  C Ban  M C Wahl    M Sundaralingam 《Biophysical journal》1997,73(3):1553-1561
The crystal structure of the DNA heptamer d(GCGCGCG) has been solved at 1.65 A resolution by the molecular replacement method and refined to an R-value of 0.184 for 3598 reflections. The heptamer forms a Z-DNA d(CGCGCG)2 with 5'-overhang G residues instead of an A-DNA d(GCGCGC)2 with 3'-overhang G residues. The overhang G residues from parallel strands of two adjacent duplexes form a trans reverse Hoogsteen G x G basepair that stacks on the six Z-DNA basepairs to produce a pseudocontinuous helix. The reverse Hoogsteen G x G basepair is unusual in that the displacement of one G base relative to the other allows them to participate in a bifurcated (G1)N2 . . . N7(G8) and an enhanced (G8)C8-H . . . O6(G1) hydrogen bond, in addition to the two usual hydrogen bonds. The 5'-overhang G residues are anti and C2'-endo while the 3'-terminal G residues are syn and C2'-endo. The conformations of both G residues are different from the syn/C3'-endo for the guanosine in a standard Z-DNA. The two cobalt hexammine ions bind to the phosphate groups in both GpC and CpG steps in Z(I) and Z(II) conformations. The water structure motif is similar to the other Z-DNA structures.  相似文献   

5.
Two hexanucleoside pentaphosphates, 5-methyl and 5-bromo cytosine derivatives of d(CpGpTp-ApCpG) have been synthesized, crystallized, and their three-dimensional structure solved. They both form left-handed Z-DNA and the methylated derivative has been refined to 1.2 Å resolution. These are the first crystal Z-DNA structures that contain AT base pairs. The overall form of the molecule is very similar to that of the unmethylated or the fully methylated (dC-dG)3 hexamer although there are slight changes in base stacking. However, significant differences are found in the hydration of the helical groove. When GC base pairs are present, the helical groove is systematically filled with two water molecules per base pair hydrogen bonded to the bases. Both of these water molecules are not seen in the electron density map in the segments of the helix containing AT base pairs, probably because of solvent disorder. This could be one of the features that makes AT base pairs form Z-DNA less readily than GC base pairs.  相似文献   

6.
The crystal structure of the alternating 5'-purine start decamer d(GCGCGCGCGC) was found to be in the left-handed Z-DNA conformation. Inasmuch as the A.T base pair is known to resist Z-DNA formation, we substituted A.T base pairs in the dyad-related positions of the decamer duplex. The alternating self-complementary decamer d(GCACGCGTGC) crystallizes in a different hexagonal space group, P6(1)22, with very different unit cell dimensions a = b = 38.97 and c = 77.34 A compared with the all-G.C alternating decamer. The A.T-containing decamer has one strand in the asymmetric unit, and because it is isomorphous to some other A-DNA decamers it was considered also to be right-handed. The structure was refined, starting with the atomic coordinates of the A-DNA decamer d(GCGGGCCCGC), by use of 2491 unique reflections out to 1.9-A resolution. The refinement converged to an R value of 18.6% for a total of 202 nucleotide atoms and 32 water molecules. This research further demonstrates that A.T base pairs not only resist the formation of Z-DNA but can also assist the formation of A-DNA by switching the helix handedness when the oligomer starts with a 5'-purine; also, the length of the inner Z-DNA stretch (d(CG)n) is reduced from an octamer to a tetramer. It may be noted that these oligonucleotide properties are in crystals and not necessarily in solutions.  相似文献   

7.
It is shown, using circular dichroism spectroscopy, that poly(dI-dC) is capable to isomerize into both Z-DNA and A-DNA in concentrated NaCl + NiCl2 and trifluoroethanol solutions, respectively. This polynucleotide also undergoes a cooperative, two-state transition in ethanol into a structure which most probably is a canonical B-DNA. This implies that the conformation of poly(dI-dC) is unusual in low-salt aqueous solution. The canonical B-DNA is also adopted by poly(dI-methyl5dC) in trifluoroethanol while this polynucleotide adopts Z-DNA not only in NaCl + NiCl2 but also in the presence of MgCl2. Poly(dI-methyl5dC) partially adopts X-DNA in concentrated CsF and mainly ethanolic solutions. Poly(dI-bromo5dC) isomerizes into Z-DNA not only in concentrated NaCl even in the absence of NiCl2 but also in concentrated MgCl2. This polynucleotide transforms between two distinct variants of Z-DNA in ethanol or trifluoroethanol solutions.  相似文献   

8.
Abstract

Attempting to elucidate biological significance of the left-handed Z-DNA is a research challenge due to Z-DNA potential role in many diseases. Discovery of Z-DNA binding proteins has ignited the interest in search for Z-DNA functions. Biosensor with Z-DNA forming probe can be useful to study the interaction between Z-DNA conformation and Z-DNA binding proteins. In this study, 5-methylcytosine (mC) containing CG decamers were characterized for their suitability to form Z-DNA and to be used in Z-DNA forming probe. The 5′-thiol oligonucleotide embedded with 5′-mCGmCGmCGmCGm CG-3′ was designed and developed as a potential Z-DNA forming probe for Z-DNA binding protein screening.  相似文献   

9.
10.
Alternating self-complementary oligonucleotides starting with a 5'-pyrimidine usually form left-handed Z-DNA; however, with a 5'-purine start sequence they form the right-handed A-DNA. Here we report the crystal structure of the decamer d(GCGCGCGCGC) with a 5'-purine start in the Z-DNA form. The decamer crystallizes in the hexagonal space group P6(5)22, unit cell dimensions a = b = 18.08 and c = 43.10 A, with one of the following four dinucleotide diphosphates in the asymmetric unit: d(pGpC)/d(GpCp)/d(pCpG)/d(CpGp). The molecular replacement method, starting with d(pGpC) of the isomorphous Z-DNA hexamer d(araC-dG)3 without the 2'-OH group of arabinose, was used in the structure analysis. The method gave the solution only after the sugar-phosphate conformation of the GpC step was manipulated. The refinement converged to a final R value of 18.6% for 340 unique reflections in the resolution range 8.0-1.9 A. A result of the sequence alternation is the alternation in the nucleotide conformation; guanosine is C3'-endo, syn, and cytidine is C2'-endo, anti. The CpG step phosphodiester conformation is the same as ZI or ZII, whereas that of the GpC step phosphodiester is "intermediate" in the sense that zeta (O3'-P bond) is the same as ZII but alpha (P-O5' bond) is the same as ZI. The duplexes generated from the dinucleotide asymmetric unit are stacked one on top of the other in the crystal to form an infinite pseudocontinuous helix. This renders it a quasi-polymerlike structure that has assumed the Z-DNA conformation further strengthened by the long inner Z-forming stretch d(CG)4. An interesting feature of the structure is the presence of water strings in both the major and the minor grooves. In the minor groove the cytosine carbonyl oxygen atoms of the GpC and CpG steps are cross-bridged by water molecules that are not themselves hydrogen bonded but are enclosed by the water rings in the mouth of the minor groove. In the major groove three independent water molecules form a zigzagging continuous water string that runs throughout the duplex.  相似文献   

11.
The chemotherapeutic agent 5-fluorouracil is a DNA base analogue which is known to incorporate into DNA in vivo. We have solved the structure of the oligonucleotide d(CGCGFG), where F is 5-fluorouracil (5FU). The DNA hexamer crystallizes in the Z-DNA conformation at two pH values with the 5FU forming a wobble base pair with guanine in both crystal forms. No evidence of the enol or ionized form of 5FU is found under either condition. The crystals diffracted X-rays to a resolution of 1.5 A and their structures have been refined to R-factors of 20.0% and 17.2%, respectively, for the pH = 7.0 and pH = 9.0 forms. By comparing this structure to that of d(CGCGCG) and d(CGCGTG), we were able to demonstrate that the backbone conformation of d(CGCGFG) is similar to that of the archetypal Z-DNA. The two F-G wobble base pairs in the duplex are structurally similar to the T-G base pairs both with respect to the DNA helix itself and its interactions with solvent molecules. In both cases water molecules associated with the wobble base pairs bridge between the bases and stabilize the structure. The fluorine in the 5FU base is hydrophobic and is not hydrogen bonded to any solvent molecules.  相似文献   

12.
There are many great reports of polyamine stabilization of the Z-DNA by bridge conformation between neighboring, symmetry-related Z-DNA in the packing of crystals. However, polyamine binding to the minor groove of Z-DNA and stabilizing the Z-DNA structure has been rarely reported. We proved that the synthesized polyamines bind to the minor groove of Z-DNA and stabilize the conformation under various conditions, by X-ray crystallographic study. These polyamines consist of a polyamine nano wire structure. The modes of the polyamine interaction were changed under different conditions. It is the first example that the crystals consisted of metal free structure. This finding provides a basis for clarifying B-Z transition mechanics.  相似文献   

13.
The left-handed Z-DNA structure of an araC-containing (where araC stands for arabinosylcytosine) hexamer, (araC-dG)3, has been solved by x-ray diffraction analysis at 1.3 A resolution. This hexamer was crystallized in the hexagonal P6(5)22 (a = b = 17.96 A, c = 43.22 A) space group in which the hexamers have statistically disordered packing arrangement along the 6(5) screw axis, yet the crystals diffract x-rays to high resolution. Its structure has been refined by the constrained least square refinement to a final R factor of 0.287 using 737 [> 3.0 sigma(F)] observed reflections. The asymmetric unit of the unit cell contains only a dinucleotide, 5'-p (araC)p(dG). The overall conformation resembles that of the canonical Z-DNA, but with some differences in details. The O2' hydroxyl groups of the araC residues form intramolecular hydrogen bonds with N2 of the 5'-guanine residues. In the deep groove of Z-DNA, these hydroxy groups replace the bridging water molecules that stabilize the guanine in the syn conformation. The results reinforce the earlier observation made by the structural analysis of another hexamer, d(CG[araC]GCG), with a mono-substitution of araC [M.-K. Teng, Y.-C. Liaw, G. A. van der Marel, J. H. van Boom, and A. H.-J. Wang (1989) Biochemistry, vol. 28, pp. 4923-4928]. These two structures show that araC residue can be incorporated readily into the Z structure and probably facilitates the B to Z transition, as supported by uv absorption spectroscopic studies in a number of araC-containing oligonucleotides. The potential biological roles of the araC-modified Z-DNA are discussed.  相似文献   

14.
P Rio  M Leng 《Nucleic acids research》1983,11(14):4947-4956
The reaction between the chemical carcinogen N-hydroxy-2-aminofluorene and poly (dG-dC) . poly (dG-dC) (B-form), poly (dG-m5dC) . poly (dG-m5dC) (B-or Z-form), poly(dG-br5dC) . poly (dG-br5dC) (Z-form) has been studied. The carcinogen binds covalently to B-DNA but does not bind significantly to Z-DNA. These results are discussed as related to the accessibility, the electrostatic potential and the dynamic structure of DNA. The accessibility and the electrostatic potential of DNA do not explain the difference in reactivity of the carcinogen since a related carcinogen N-acetoxy-N-acetyl-2-aminofluorene binds equally well to both B and Z-DNA. On the other hand, poly (dG-dC) . poly(dG-dC) and poly (dG-br5dC) . poly(dG-br5dC), in presence of ethidium bromide binds equally well to N-hydroxy-2-aminofluorene. It is suggested that the very low binding of this carcinogen to Z-DNA as compared to B-DNA is due to differences in the dynamic structures of these two forms of DNA.  相似文献   

15.
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 A resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C(3)H(10)N(2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.  相似文献   

16.
Methylation of cytosine at the 5-carbon position (5 mC) is observed in both prokaryotes and eukaryotes. In humans, DNA methylation at CpG sites plays an important role in gene regulation and has been implicated in development, gene silencing, and cancer. In addition, the CpG dinucleotide is a known hot spot for pathologic mutations genome-wide. CpG tracts may adopt left-handed Z-DNA conformations, which have also been implicated in gene regulation and genomic instability. Methylation facilitates this B-Z transition but the underlying mechanism remains unclear. Herein, four structural models of the dinucleotide d(GC)(5) repeat sequence in B-, methylated B-, Z-, and methylated Z-DNA forms were constructed and an aggregate 100 nanoseconds of molecular dynamics simulations in explicit solvent under physiological conditions was performed for each model. Both unmethylated and methylated B-DNA were found to be more flexible than Z-DNA. However, methylation significantly destabilized the BII, relative to the BI, state through the Gp5mC steps. In addition, methylation decreased the free energy difference between B- and Z-DNA. Comparisons of α/γ backbone torsional angles showed that torsional states changed marginally upon methylation for B-DNA, and Z-DNA. Methylation-induced conformational changes and lower energy differences may contribute to the transition to Z-DNA by methylated, over unmethylated, B-DNA and may be a contributing factor to biological function.  相似文献   

17.
Interest to the left-handed DNA conformation has been recently boosted by the findings that a number of proteins contain the Zα domain, which has been shown to specifically recognize Z-DNA. The biological function of Zα is presently unknown, but it has been suggested that it may specifically direct protein regions of Z-DNA induced by negative supercoiling in actively transcribing genes. Many studies, including a crystal structure in complex with Z-DNA, have focused on the human ADAR1 Zα domain in isolation. We have hypothesized that the recognition of a Z-DNA sequence by the ZαADAR1 domain is context specific, occurring under energetic conditions, which favor Z-DNA formation. To test this hypothesis, we have applied atomic force microscopy to image ZαADAR1 complexed with supercoiled plasmid DNAs. We have demonstrated that the ZαADAR1 binds specifically to Z-DNA and preferentially to d(CG)n inserts, which require less energy for Z-DNA induction compared to other sequences. A notable finding is that site-specific Zα binding to d(GC)13 or d(GC)2C(GC)10 inserts is observed when DNA supercoiling is insufficient to induce Z-DNA formation. These results indicate that ZαADAR1 binding facilities the B-to-Z transition and provides additional support to the model that Z-DNA binding proteins may regulate biological processes through structure-specific recognition.  相似文献   

18.
C V Mura  B D Stollar 《Biochemistry》1984,23(25):6147-6152
Interactions of chicken H1 and H5 histones with poly(dA-dT), poly(dG-dC), and the Z-DNA structure brominated poly(dG-dC) were measured by a nitrocellulose filter binding assay and circular dichroism. At low protein:DNA ratios, both H1 and H5 bound more Z-DNA than B-DNA, and binding of Z-DNA was less sensitive to interference by an increase in ionic strength (to 600 mM NaCl). H5 histone bound a higher percentage of all three polynucleotides than did H1 and caused more profound CD spectral changes as well. For spectral studies, histones and DNA were mixed in 2.0 M NaCl and dialyzed stepwise to low ionic strength. Prepared in this way or by direct mixing in 150 mM NaCl, complexes made with right-handed poly(dG-dC) showed a deeply negative psi spectrum (deeper with H5 than with H1). Complexes of histone and Br-poly(dG-dC) showed a reduction in the characteristic Z-DNA spectral features, with H5 again having a greater effect. Complexes of poly(dA-dT) and H5, prepared by mixing them at a protein:DNA ratio of 0.5, displayed a distinctive spectrum that was not achieved with H1 even at higher protein:DNA ratios. It included a new negative band at 287 nm and a large positive band at 255 nm, giving the appearance of an inverted spectrum relative to spectra of various forms of B-DNA. These findings may reflect an ability of the different lysine-rich histones to cause varying conformational changes in the condensation of chromatin in DNA regions of highly biased base sequence.  相似文献   

19.
Cis-dichlorodiammine platinum (II) has been reacted with synthetic polynucleotides either in B or in Z conformation. The binding of cis-dichlorodiammine platinum (II) stabilizes the Z conformation when reacted with poly (dG-m5dC) ·poly (dG-m5dC) in the Z conformation as shown by circular dichroism and by the antibodies to Z-DNA. On the other hand, the binding of cis-dichlorodiammine platinum (II) stabilizes a new conformation when reacted with poly(dG-dC)·poly(dG-dC) or poly (dG-m5dC)·poly(dG-m5dC) in the B conformation. The antibodies to Z-DNA bind to these platinated polynucleotides. In rabbits, the injection of platinated poly (dG-dC) poly (dG-dC) induces the synthesis of antibodies which recognize Z-DNA. In low salt conditions, the circular dichroism spectra of these platinated polynucleotides differ from those of B-DNA or Z-DNA. The characteristic31P nuclear magnetic resonance spectrum of Z-DNA is not detected. It appears only at high ionic strength, as a component of a more complex spectrum.  相似文献   

20.
The B-to-Z conformational transition of poly(dG-dC) is highly promoted by 5-methyl substitution of the dC moiety, i.e. in poly(dG-methyl5dC). By the synthesis of a new poly(dG-dC) analogue, poly(dG-ethyl5dC), the effect of a longer alkyl-chain substituent of dC on structure and conformation has been studied with ultraviolet absorption melting profiles and circular dichroism spectroscopy. The 5-ethyl substituent in poly(dG-ethyl5dC) destabilizes the duplex structure against thermal denaturation compared with both poly(dG-methyl5dC) and poly(dG-dC). C.d. studies also reveal that for the high-salt B-Z transition of poly(dG-ethyl5dC) a higher NaCl concentration is required than for that of poly(dG-methyl5dC), although much lower than for poly(dG-dC). However low-salt Z-DNA in poly(dG-ethyl5dC) shows unique features, e.g. it needs no divalent cations to be stable. The low-salt B-Z transition of poly(dG-ethyl5dC) can also be observed by the absorption-temperature melting profile, in constrast to both poly(dG-methyl5dC) and poly(dG-dC). The effects of MgCl2 concentration, temperature, acid pH and trifluorethanol on the conformation of poly(dG-ethyl5dC) have also been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号