首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.

  相似文献   

2.
Osmotin is a plant PR-5 protein. It has a broad spectrum of antifungal activity, yet also exhibits specificity for certain fungal targets. The structural bases for this specificity remain unknown. We show here that full sensitivity of Saccharomyces cerevisiae cells to the PR-5 protein osmotin is dependent on the function of MNN2, MNN4 and MNN6. MNN2 is an alpha-1, 2-mannosyltransferase catalyzing the addition of the first mannose to the branches on the poly l,6-mannose backbone of the outer chain of cell wall N-linked mannans. MNN4 and MNN6 are required for the transfer of mannosylphosphate to cell wall mannans. Null mnn2, mnn4 or mnn6 mutants lack phosphomannans and are defective in binding osmotin to the fungal cell wall. Both antimannoprotein antibody and the cationic dye alcian blue protect cells against osmotin cytotoxicity. MNN1 is an alpha-1,3-mannosyltransferase that adds the terminal mannose to the outer chain branches of N-linked mannan, masking mannosylphosphate. Null mnn1 cells exhibit enhanced osmotin binding and sensitivity. Several cell wall mannoproteins can bind to immobilized osmotin, suggesting that their polysaccharide constituent determines osmotin binding. Our results demonstrating a causal relationship between cell surface phosphomannan and the susceptibility of a yeast strain to osmotin suggest that cell surface polysaccharides of invading pathogens control target specificity of plant PR-5 proteins.  相似文献   

3.
酿酒酵母糖蛋白的N-糖基化经过高尔基体的修饰后形成聚合度约150-200的甘露寡糖,高尔基体N-糖基化的糖基转移酶Mnn1p和Och1p在甘露寡糖的形成过程中起关键作用。通过同源重组置换敲除了酵母中的MNN1OCH1基因阻断高尔基体N-糖基化修饰,分离纯化了mnn1 och1突变株中的N-糖蛋白,糖酰胺酶PNGaseF酶解释放的N-糖链经过2-氨基吡啶衍生后,利用HPLC和MALDITOF/MS结合的方法分析了突变株糖蛋白上的N-糖链。结果显示mnn1 och1突变株中的糖蛋白的N-糖链为结构单一的糖链,分子量为1794.66,推测为Man8GlcNAc2。  相似文献   

4.
Total cell mannoprotein was isolated from Saccharomyces cerevisiae X2180 mutants that have defects in elongation of the outer chain attached to the N-linked core oligosaccharides (mnn7, mnn8, mnn9, and mnn10) (Ballou, L., Cohen, R. E., and Ballou, C. E. (1980) J. Biol. Chem. 255, 5986-5991). Comparison of the oligosaccharides released by endoglucosaminidase H digestion confirmed that the mnn9 mutation eliminates all but two mannoses of the outer chain, whereas the mnn8 and mnn10 strains produce outer chains of variable but similar lengths. The isolate designated mnn7 was found to be allelic with mnn8. Haploid mutants of the type mnn8 mnn9 or mnn9 mnn10 had the mnn9 phenotype, which established that the mnn9 defect is dominant and presumably acts at a processing step prior to the steps affected by mnn8 and mnn10. Analysis of the mnn1 mnn2 mnn10 oligosaccharides revealed that the heterogeneous outer chain contained 6-16 alpha 1----6-linked mannose units and each was terminated by a single alpha 1----2-linked mannose unit, whereas the core lacked one such unit that was present in the mnn9 oligosaccharide. The results are consistent with and support the hypothesis (Gopal, P. K., and Ballou, C. E. (1988) Proc. Natl. Acad. Sci. U.S.A. 84, 8824-8828) that addition of such a side-chain mannose unit is associated with termination of outer chain elongation in these mutants and may serve as a stop signal that regulates outer chain synthesis in the parent wild-type strain.  相似文献   

5.
The mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they lack mannose phosphate and have terminal alpha(1-->2)-linked N-acetylglucosamine. Previously, Smith et al. (Smith, W. L. Nakajima, T., and Ballou, C. E. (1975) J. Biol. Chem. 250, 3426-3435) characterized two mutants, mnn2-1 and mnn2-2, which lacked terminal N-acetylglucosamine in their mannoproteins. The former mutant lacks the Golgi N-acetylglucosaminyltransferase activity, whereas the latter one was recently found to be deficient in the Golgi UDP-GlcNAc transporter activity. Analysis of extensive crossings between the two mutants led Ballou and co-workers (reference cited above) to conclude that these genes were allelic or tightly linked. We have now cloned the gene encoding the K. lactis Golgi membrane N-acetylglucosaminyltransferase by complementation of the mnn2-1 mutation and named it GNT1. The mnn2-1 mutant was transformed with a 9.5-kilobase (kb) genomic fragment previously shown to contain the gene encoding the UDP-GlcNAc transporter; transformants were isolated, and phenotypic correction was monitored after cell surface labeling with fluorescein isothiocyanate-conjugated Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine, and a fluorescence-activated cell sorter. The above 9.5-kb DNA fragment restored the wild-type lectin binding phenotype of the transferase mutant; further subcloning of this fragment yielded a smaller one containing an opening reading frame of 1,383 bases encoding a protein of 460 amino acids with an estimated molecular mass of 53 kDa, which also restored the wild-type phenotype. Transformants had also regained the ability to transfer N-acetylglucosamine to 3-0-alpha-D-mannopyranosyl-D-mannopyranoside. The gene encoding the above transferase was found to be approximately 1 kb upstream from the previously characterized MNN2 gene encoding the UDP-GlcNAc Golgi transporter. Each gene can be transcribed independently by their own promoter. To our knowledge this is the first demonstration of two Golgi apparatus functionally related genes being contiguous in a genome.  相似文献   

6.
Neutral and phosphorylated N-linked oligosaccharides were isolated from Saccharomyces cerevisiae mnn9 and mnn9 gls1 mutant mannoproteins and separated into homologues that differed in the number of terminal alpha 1----3-linked mannoses. In each type of oligosaccharide, the addition of such mannose was shown to occur in an ordered rather than a random fashion. The results confirm and extend an earlier report that dealt with the N-linked oligosaccharides from yeast invertase [Trimble, R.B., & Atkinson, P.H. (1986) J. Biol. Chem. 261, 9815-9824], and they suggest that the postulated processing pathway can be generalized to include phosphorylated and glucose-containing N-linked oligomannosides. We conclude that this processing pathway is identical for the analogous oligosaccharides from the mnn9 and wild-type strains of S. cerevisiae. Analysis of the mnn2 mnn10 mannoprotein revealed that a similar modification occurred at the branched terminus of the outer chain as well as in the core in this mutant.  相似文献   

7.
C. Kanik-Ennulat  E. Montalvo    N. Neff 《Genetics》1995,140(3):933-943
Orthovanadate is a small toxic molecule that competes with the biologically important oxyanion orthophosphate. Orthovanadate resistance arises spontaneously in Saccharomyces cerevisiae haploid cells by mutation in a number of genes. Mutations selected at 3 mM sodium orthovanadate have different degrees of vanadate resistance, hygromycin sensitivity, detergent sensitivity and sporulation defects. Recessive vanadate-resistant mutants belong to at least six genetic loci. Most mutants are defective in outer chain glycosylation of secreted invertase (van1, van2, van4, van5, van6, VAN7-116 and others), a phenotype found in some MNN or VRG mutants. The phenotypes of these vanadate-resistant mutants are consistent with an alteration in the permeability or specificity of the Golgi apparatus. The previously published VAN1 gene product has a 200 amino acid domain with 40% identity with the MNN9 gene product and 70% identity with the ANP1 gene product. Cells containing the van1-18, mnn9 (vrg6) or anp1 mutations have some phenotypic similarities. The VAN2 gene was isolated and its coding region is identified and reported. It is an essential gene on chromosome XV and its translated amino acid sequence predicts a unique 337 amino acid protein with multiple transmembrane domains.  相似文献   

8.
The Saccharomyces cerevisiae MNN4 gene, which is involved inmannosylphosphate transfer from GDP-mannose to N-linked oligosaccharide,has been cloned from a lambda phage containing a yeast chromosomeXI DNA fragment The MNN4 ORF encodes a protein of 1178 aminoacids. The deduced amino acid sequence shows a topology of typeII membrane proteins and has a unique repeated sequence of lysineand glutamic acid at the C-terminus. Disruption and overexpressionof MNN4 led to a decrease and increase, respectively, of themannosylphosphate content in cell wall mannans prepared fromboth mnn4 and wild type strains. A dramatic decrease of mannosylphosphateoccurs in  相似文献   

9.
We find that the N-linked Man8GlcNAc2- core oligosaccharide of Saccharomyces cerevisiae mnn mutant mannoproteins is enlarged by the addition of the outer chain to the alpha 1----3-linked mannose in the side chain that is attached to the beta 1----4-linked mannose rather than by addition to the terminal alpha 1----6-linked mannose. This conclusion is derived from structural studies on a phosphorylated oligosaccharide fraction and from mass spectral fragment analysis of neutral core oligosaccharides.  相似文献   

10.
The N-linked oligosaccharides, from Saccharomyces cerevisiae mnn1 mnn9 mutant mannoprotein extracted from the cells in hot citrate buffer, were separated by ion exchange into a monophosphate diester, a monophosphate monoester, a diphosphate diester, and a diphosphate monoester diester. The structures of the major components with diesterified phosphate were assigned as follows (where M = mannose), according to a recently revised oligosaccharide structure for the mnn mutants (Hernandez, L. M., Ballou, L., Alvarado, E., Gillece-Castro, B. L., Burlingame, A. L., and Ballou, C. E. (1989) J. Biol. Chem. 264, 11849-11856). formula; see text The monoester derivatives were mixtures of the possible isomers produced by removal of one or the other phosphoglycosyl-linked mannose units, and they were shown to arise by chemical degradation during isolation. The mnn1 mnn2 mnn10 acidic oligosaccharide fraction contained a mono- and a diphosphate ester. The monophosphate consisted predominantly of a single isomer with a mannosyl phosphate unit located at the end of the outer chain in an oligosaccharide with the following structure, where x may range from 2 to 12. The diphosphate had a mannosyl phosphate in this formula; see text position as well as one on the terminal alpha 1----6-linked mannose in the core. The presence in the mnn1 mnn9 or mnn1 mnn2 mnn10 background of the mnn4 or mnn6 mutations, which are known to regulate phosphorylation in yeast, reduced phosphorylation by 90% but did not eliminate it. AI-12522  相似文献   

11.
Glycoproteins secreted by the yeast Kluyveromyces lactis are usually modified by the addition at asparagines-linked glycosylation sites of heterogeneous mannan residues. The secreted glycoproteins in K. lactis that become hypermannosylated will bear a non-human glycosylation pattern and can adversely affect the half-life, tissue distribution and immunogenicity of a therapeutic protein. Here, we describe engineering a K. lactis strain to produce non-hypermannosylated glycoprotein, decreasing the outer-chain mannose residues of N-linked oligosaccharides. We investigated and developed the method of two-step homologous recombination to knockout the OCH1 gene, encoding α1,6-mannosyltransferase and MNN1 gene, which is homologue of Saccharomyces cerevisiae MNN1, encoding a putative α1,3-mannosyltransferase. We found the Kloch1 mutant strain has a defect in hyperglycosylation, inability in adding mannose to the core oligosaccharide. The N-linked oligosaccharides assembled on a secretory glycoprotein, HSA/GM–CSF in Kloch1 mutant, contained oligosaccharide Man13–14GlcNAc2, and in Kloch1 mnn1 mutant, contained oligosaccharide Man9–11GlcNAc2, whereas those in the wild-type strain, consisted of oligosaccharides with heterogeneous sizes, Man>30GlcNAc2. Taken together, these results indicated that KlOch1p plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in K. lactis. The KlMnn1p, was proved to be certain contribution to the outer hypermannosylation, most possibly encodes α1,3-mannosyltransferase. Therefore, the Kloch1 and Kloch1 mnn1 mutants can be used as a foundational host to produce glycoproteins lacking the outer-chain hypermannoses and further maybe applicable to be a promising system for yeast therapeutic protein production.  相似文献   

12.
Cell surface hydrophobicity (CSH) of Candida species enhances virulence by promoting adhesion to host tissues. Biochemical analysis of yeast cell walls has demonstrated that the most significant differences between hydrophobic and hydrophilic yeasts are found in the acid-labile fraction of Candida albicans phosphomannoprotein, suggesting that this fraction is important in the regulation of the CSH phenotype. The acid-labile fraction of C. albicans is unique among fungi, in that it is composed of an extended polymer of beta-1,2-mannose linked to the acid-stable region of the N-glycan by a phosphodiester bond. C. albicans serotype A and B strains both contain a beta-1,2-mannose acid-labile moiety, but only serotype A strains contain additional beta-1,2-mannose in the acid-stable region. A knockout of the C. albicans homolog of the Saccharomyces cerevisiae MNN4 gene was generated in two serotype B C. albicans patient isolates by using homologous gene replacement techniques, with the anticipation that they would be deficient in the acid-labile fraction and, therefore, demonstrate perturbed CSH. The resulting mnn4delta-deficient derivative has no detectable phosphate-linked beta-1,2-mannose in its cell wall, and hydrophobicity is increased significantly under conditions that promote the hydrophilic phenotype. The mnn4delta mutant also demonstrates an unanticipated perturbation in the acid-stable mannan fraction. The present study reports the first genetic knockout constructed in a serotype B C. albicans strain and represents an important step for dissecting the regulation of CSH.  相似文献   

13.
A large Mr chondroitin sulfate proteoglycan was extracted from the media of human aorta under dissociative conditions and purified by density-gradient centrifugation, ion-exchange chromatography, and gel filtration chromatography. Removal of a contaminating dermatan sulfate proteoglycan was accomplished by reduction, alkylation and rechromatography on the gel filtration column. After chondroitinase ABC treatment, the proteoglycan core was separated from a residual heparan sulfate proteoglycan by a third gel filtration chromatography step. As assessed by radioimmunoassay, the isolated proteoglycan core was free of link protein, but possessed epitopes that were recognized by antisera against the hyaluronic acid binding region of bovine cartilage proteoglycan as well as those that were weakly recognized by anti-keratan sulfate antisera. Following beta-elimination of the protein core, the liberated low Mr oligosaccharides were partially resolved by Sephadex G-50 chromatography, and their primary structure was determined by 500-MHz1H NMR spectroscopy in combination with compositional sugar analysis. The N-glycosidic carbohydrate chains, which were obtained as glycopeptides, were all biantennary glycans containing NeuAc and Fuc; microheterogeneity in the NeuAc----Gal linkage was detected in one of the branches. The N-glycosidic glycans have the following overall structure: (Formula: see text). The majority of the O-glycosidic carbohydrate chains bound to the protein core were found to be of the mucin type. They were obtained as glycopeptides and oligosaccharide alditols, and possessed the following structures: NeuAc alpha(2----3)Gal beta(1----3)GalNAc-ol, [NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----6)]GalNAc-ol, and NeuAc alpha-(2----3) Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)] GalNAc-ol. The remainder of the O-glycosidic carbohydrate chains bound to the isolated proteoglycan were the hexasaccharide link regions of the chondroitin sulfate chains that remained after chondroitinase ABC treatment of the native molecule. These latter glycans, which were obtained as oligosaccharide alditols, had the following structure (with GalNAc free of sulfate or containing sulfate bound at either C-4 or C-6): delta 4,5GlcUA beta(1----3)GalNAc beta(1----4)GlcUA beta(1----3)Gal beta(1----3)Gal beta(1----4)Xyl-ol.  相似文献   

14.
The Saccharomyces cerevisiae mnn10 mutant is defective in thesynthesis of N-linked oligosaccharides (Ballou et al., 1989).This mutation has no effect on O-linked sugars, but resultsin the accumulation of glycoproteins that contain severely truncatedN-linked outer-chain oligosaccharides. We have cloned the MNN10gene by complementation of the hygromycin B sensitivity conferredby the mutant phenotype. Sequence analysis predicts that Mnn10pis a 46.7 kDa type II membrane protein with structural featurescharacteristic of a glycosyltransferase. Subcellular fractionationdata indicate that most of the Mnn10 protein cofractionateswith Golgi markers and away from markers for the endoplasmicreticulum (ER), suggesting Mnn10p is localized to the Golgicomplex. A comparison of the Mnn10 protein sequence to proteinsin the two different databases identified five proteins thatare homologous to Mnn10p, including a well characterized Schizosaccharomycespombe  相似文献   

15.
Mouse MAbs (WKH-1 through -3) to the human histo-blood group A glycosyltransferase (Fuc alpha 1----2Gal alpha 1----3 galactosaminyltransferase) were established by immunization with the purified native A transferase protein. Hybridomas were selected on the basis of solid-phase reactivity with the purified native A transferase, cell immunofluorescence and immunoprecipitation of transferase activity, and absence of reactivity with blood group ABH carbohydrate determinants. Three MAbs, thus selected, were found most likely to react with the protein epitopes unrelated to carbohydrate epitopes of purified A transferase. The MAbs reacted with cells having high A transferase activity and immunoprecipitated the A transferase activity as well as the 40,000 MW iodinated transferase protein. The antibodies were shown, however, to immunoprecipitate and partially inhibit not only A1 and A2 but also B transferase activity from plasma and A transferase from human lung, and to react with B cells expressing B transferase, thus indicating a cross-reactivity with B transferase. In contrast, they showed no reactivity with various cells having the O phenotype and did not immunoprecipitate the A transferase from porcine submaxillary glands or the alpha 1----2fucosyltransferase from Colo205 cells. The purified A glycosyltransferase was found to carry blood group A carbohydrate determinants by immunochemical detection with a panel of anti-carbohydrate MAbs. These determinants are believed to be N-linked, since treatment of the purified A transferase with N-glycanase removed activity. Immunohistological studies of three epithelial tissues showed that the antibodies stained the Golgi area of cells in epithelia from A and B, but not O, individuals.  相似文献   

16.
Two GDP-mannose-dependent mannosyltransferase activities (designated M1MT-I and M2MT-I) from Triton X-100 extracts of Saccharomyces cerevisiae mnn1 microsomes were separated by concanavalin A lectin chromatography and partially purified. The two transferases were distinguished by differences in concanavalin A affinity and in carbohydrate acceptor specificity. Analyses of the reaction products indicate that both enzymes are alpha 1,2-mannosyltransferases. M1MT-I utilizes mannose or methyl-alpha-mannoside as acceptor while M2MT-I catalyzes the transfer of mannose from GDP-mannose to unsubstituted nonreducing alpha 1,6-linked mannose residues in the acceptor molecule. M2MT-I activity correlates with the presence of a single alpha 1,2-linked mannose residue at the nonreducing terminus of mnn2mnn9 and mnn2mnn10 outer chain oligosaccharides, and the enzyme may be involved in regulating outer chain elongation.  相似文献   

17.
The Kluyveromyces lactis UDP-GlcNAc transporter (KlMnn2-2p) is responsible for the biosynthesis of N-glycans containing N-acetylglucosamine. A putative gene of Hansenula polymorpha encoding a KlMnn2-2p homologue, HpMNN2-2, was identified and investigated for its function. The deletion mutant strain of HpMNN2-2 (Hpmnn2-2Δ) showed increased sensitivity to geneticin, hygromycin B, and tunicamycin. However, the Hpmnn2-2Δ strain exhibited increased resistance to Calcofluor white, an inhibitor of chitin biosynthesis, along with a reduced chitin content. The localization of HpMnn2-2p at the endoplasmic reticulum-enriched membrane, different from the Golgi localization of a K. lactis homologue, further supports the involvement of HpMnn2-2p in cell wall chitin biosynthesis.  相似文献   

18.
Coordinate expression of X and Y haptens during murine embryogenesis   总被引:3,自引:0,他引:3  
The X hapten (Gal beta 1----4[Fuc alpha 1----3]GlcNAc) may play an important role in the adhesion of blastomeres during compaction. Therefore, we have investigated more thoroughly developmental changes in the fucosylation of lactoseries carbohydrate chains and the enzymatic basis of these fucosylation changes using well-characterized monoclonal antibodies. The Y hapten (Fuc alpha 1----2Gal beta 1----4[Fuc alpha 1----3]GlcNAc) and polymeric X haptens were detected by fluorescence-activated flow cytometry on murine embryonal carcinoma cells. In paraffin sections of postimplantation mouse embryos, the Y hapten was detected in the embryonic ectoderm and visceral endoderm on Days 5.5-7.5; this pattern of antigen expression is identical to that previously reported for the X hapten (SSEA-1). Thus, the Gal:alpha 1----2 (H) and GlcNAc:alpha 1----3 (X) fucosyltransferases appear to be co-regulated during embryogenesis. Reciprocal changes in X and Y hapten expression were observed, however, during preimplantation development. Unlike the X hapten, the Y hapten is expressed maximally on 16-cell morulae and 32- to 64-cell blastocysts. Eight-cell embryos cultured to the blastocyst stage in vitro did not acquire the Y hapten, however, suggesting a role for the uterine environment in carbohydrate antigen expression. Homogenates of F9 embryonal carcinoma cells were found to possess a potent GlcNAc:alpha 1----3 fucosyltransferase activity, as well as a weaker Gal:alpha 1----2 fucosyltransferase activity, using paragloboside as a substrate. The results suggest that embryonic cell surface carbohydrate phenotypes represent a balance in the competition between glycosyltransferases for available substrates. Rapid changes in carbohydrate expression during development may reflect intermediate states of cellular commitment and determination that are critical for lineage formation and morphogenesis.  相似文献   

19.
The sec18 and sec23 secretory mutants of Saccharomyces cerevisiae have previously been shown to exhibit temperature-conditional defects in protein transport from the ER to the Golgi complex (Novick, P., S. Ferro, and R. Schekman, 1981. Cell. 25:461-469). We have found that the Sec18 and Sec23 protein functions are rapidly inactivated upon shifting mutant cells to the nonpermissive temperature (less than 1 min). This has permitted an analysis of the potential role these SEC gene products play in transport events distal to the ER. The sec-dependent transport of alpha-factor (alpha f) and carboxypeptidase Y (CPY) biosynthetic intermediates present throughout the secretory pathway was monitored in temperature shift experiments. We found that Sec18p/NSF function was required sequentially for protein transport from the ER to the Golgi complex, through multiple Golgi compartments and from the Golgi complex to the cell surface. In contrast, Sec23p function was required in the Golgi complex, but only for transport of alpha f out of an early compartment. Together, these studies define at least three functionally distinct Golgi compartments in yeast. From cis to trans these compartments contain: (a) An alpha 1----6 mannosyltransferase; (b) an alpha 1----3 mannosyltransferase; and (c) the Kex2 endopeptidase. Surprisingly, we also found that a pool of Golgi-modified CPY (p2 CPY) located in a compartment distal to the alpha 1----3 mannosyltransferase does not require Sec18p function for final delivery to the vacuole. This compartment appears to be equivalent to the Kex2 compartment as we show that a novel vacuolar CPY-alpha f-invertase fusion protein undergoes efficient Kex2-dependent cleavage resulting in the secretion of invertase. We propose that this Kex2 compartment is the site in which vacuolar proteins are sorted from proteins destined to be secreted.  相似文献   

20.
Screening for genes affecting super-secreting phenotype of the over-secreting mutant of Kluyveromyces lactis resulted in isolation of the gene named KlMNN10, sharing high homology with Saccharomyces cerevisiae MNN10. The disruption of the KlMNN10 in Kluyveromyces lactis, as well as of MNN10 and MNN11 in Saccharomyces cerevisiae, conferred the super-secreting phenotype. MNN10 isolated from Saccharomyces cerevisiae suppressed the super-secretion phenotype in Kluyveromyces lactis klmnn10, as did the homologous KlMNN10. The genes MNN10 and MNN11 of Saccharomyces cerevisiae encode mannosyltransferases responsible for the majority of the alpha-1,6-polymerizing activity of the mannosyltransferase complex. These data agree with the view that the structure of glycoproteins in a yeast cell wall strongly influences the release of homologous and heterologous proteins in the medium. The set of genes namely the suppressors of the over-secreting phenotype, could be attractive for further analysis of gene functions, over-secreting mechanisms and for construction of new strains optimized for heterologous protein secretion. KlMNN10 has EMBL accession no. AJ575132.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号