首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, Boolean-network-model-based approaches to dynamical analysis of complex biological networks such as gene regulatory networks have been extensively studied. One of the fundamental problems in control theory of such networks is the problem of determining whether a given substance quantity can be arbitrarily controlled by operating the other substance quantities, which we call the controllability problem. This paper proposes a polynomial-time algorithm for solving this problem. Although the algorithm is based on a sufficient condition for controllability, it is easily computable for a wider class of large-scale biological networks compared with the existing approaches. A key to this success in our approach is to give up computing Boolean operations in a rigorous way and to exploit an adjacency matrix of a directed graph induced by a Boolean network. By applying the proposed approach to a neurotransmitter signaling pathway, it is shown that it is effective.  相似文献   

2.
Minimum driver node sets (MDSs) play an important role in studying the structural controllability of complex networks. Recent research has shown that MDSs tend to avoid high-degree nodes. However, this observation is based on the analysis of a small number of MDSs, because enumerating all of the MDSs of a network is a #P problem. Therefore, past research has not been sufficient to arrive at a convincing conclusion. In this paper, first, we propose a preferential matching algorithm to find MDSs that have a specific degree property. Then, we show that the MDSs obtained by preferential matching can be composed of high- and medium-degree nodes. Moreover, the experimental results also show that the average degree of the MDSs of some networks tends to be greater than that of the overall network, even when the MDSs are obtained using previous research method. Further analysis shows that whether the driver nodes tend to be high-degree nodes or not is closely related to the edge direction of the network.  相似文献   

3.
Dynamics of neuronal networks can be altered in at least two ways: by changes in connectivity, that is, the physical architecture of the network, or changes in the amplitudes and kinetics of the intrinsic and synaptic currents within and between the elements making up a network. We argue that the latter changes are often overlooked as sources of alterations in network behavior when there are also structural (connectivity) abnormalities present; indeed, they may even give rise to the structural changes observed in these states. Here we look at two clinically relevant states (Parkinson's disease and schizophrenia) and argue that non-structural changes are important in the development of abnormal dynamics within the networks known to be relevant to each disorder. We also discuss anesthesia, since it is entirely acute, thus illustrating the potent effects of changes in synaptic and intrinsic membrane currents in the absence of structural alteration. In each of these, we focus on the role of changes in GABAergic function within microcircuits, stressing literature within the last few years.  相似文献   

4.
Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.  相似文献   

5.
Despite recent advances in applying networks to study ecological systems, most of the network datasets are built attending only to a single type of interaction between nodes, which can be an oversimplification. In the present work, we built ecological networks that had positive and negative links for multiple plant communities based on the local spatial association between species. Then, we evaluated whether those networks were in balance, a hypothesis commonly formulated for real signed graphs but never tested in systems other than social networks. Specifically, we quantified the global and the local structural balance in the networks. We found that plant community networks were more balanced than expected by chance, and that this pattern was due to a large number of balanced triads to the detriment of unbalanced ones. Furthermore, this pattern was consistent among all of the types of the plant communities examined, which suggests that configurations that promote structural balance might be common in ecological signed networks. We also found that almost all networks had some unbalanced components, which might be responsible for the adaptation of the system. Mechanisms behind these structure and possible applications for community ecology are discussed. Our results encourage testing structural balance in other ecological networks to confirm if it is a widespread architecture of natural systems.  相似文献   

6.
The integration of molecular networks with other types of data, such as changing levels of gene expression or protein-structural features, can provide richer information about interactions than the simple node-and-edge representations commonly used in the network community. For example, the mapping of 3D-structural data onto networks enables classification of proteins into singlish- or multi-interface hubs (depending on whether they have >2 interfaces). Similarly, interactions can be classified as permanent or transient, depending on whether their interface is used by only one or by multiple partners. Here, we incorporate an additional dimension into molecular networks: dynamic conformational changes. We parse the entire PDB structural databank for alternate conformations of proteins and map these onto the protein interaction network, to compile a first version of the Dynamic Structural Interaction Network (DynaSIN). We make this network available as a readily downloadable resource file, and we then use it to address a variety of downstream questions. In particular, we show that multi-interface hubs display a greater degree of conformational change than do singlish-interface ones; thus, they show more plasticity which perhaps enables them to utilize more interfaces for interactions. We also find that transient associations involve smaller conformational changes than permanent ones. Although this may appear counterintuitive, it is understandable in the following framework: as proteins involved in transient interactions shuttle between interchangeable associations, they interact with domains that are similar to each other and so do not require drastic structural changes for their activity. We provide evidence for this hypothesis through showing that interfaces involved in transient interactions bind fewer classes of domains than those in a control set.  相似文献   

7.
Artificial neural networks are usually built on rather few elements such as activation functions, learning rules, and the network topology. When modelling the more complex properties of realistic networks, however, a number of higher-level structural principles become important. In this paper we present a theoretical framework for modelling cortical networks at a high level of abstraction. Based on the notion of a population of neurons, this framework can accommodate the common features of cortical architecture, such as lamination, multiple areas and topographic maps, input segregation, and local variations of the frequency of different cell types (e.g., cytochrome oxidase blobs). The framework is meant primarily for the simulation of activation dynamics; it can also be used to model the neural environment of single cells in a multiscale approach. Received: 9 January 1996 / Accepted in revised form: 24 July 1996  相似文献   

8.
Controlling complex network is an essential problem in network science and engineering. Recent advances indicate that the controllability of complex network is dependent on the network''s topology. Liu and Barabási, et.al speculated that the degree distribution was one of the most important factors affecting controllability for arbitrary complex directed network with random link weights. In this paper, we analysed the effect of degree distribution to the controllability for the deterministic networks with unweighted and undirected. We introduce a class of deterministic networks with identical degree sequence, called (x,y)-flower. We analysed controllability of the two deterministic networks ((1, 3)-flower and (2, 2)-flower) by exact controllability theory in detail and give accurate results of the minimum number of driver nodes for the two networks. In simulation, we compare the controllability of (x,y)-flower networks. Our results show that the family of (x,y)-flower networks have the same degree sequence, but their controllability is totally different. So the degree distribution itself is not sufficient to characterize the controllability of deterministic networks with unweighted and undirected.  相似文献   

9.
Signal transduction networks have only been studied at a small scale because large-scale reconstructions and suitable in silico analysis methods have not been available. Since reconstructions of large signaling networks are progressing well there is now a need to develop a framework for analysing structural properties of signaling networks. One such framework is presented here, one that is based on systemically independent pathways and a mass-balanced representation of signaling events. This approach was applied to a prototypic signaling network and it allowed for: (1) a systemic analysis of all possible input/output relationships, (2) a quantitative evaluation of network crosstalk, or the interconnectivity of systemically independent pathways, (3) a measure of the redundancy in the signaling network, (4) the participation of reactions in signaling pathways, and (5) the calculation of correlated reaction sets. These properties emerge from network structure and can only be derived and studied within a defined mathematical framework. The calculations presented are the first of their kind for a signaling network, while similar analysis has been extensively performed for prototypic and genome-scale metabolic networks. This approach does not yet account for dynamic concentration profiles. Due to the scalability of the stoichiometric formalism used, the results presented for the prototypic signaling network can be obtained for large signaling networks once their reconstruction is completed.  相似文献   

10.
Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it''s urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node''s controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks.  相似文献   

11.
This paper proposes a study of biological regulation networks based on a multi-level strategy. Given a network, the first structural level of this strategy consists in analysing the architecture of the network interactions in order to describe it. The second dynamical level consists in relating the patterns found in the architecture to the possible dynamical behaviours of the network. It is known that circuits are the patterns that play the most important part in the dynamics of a network in the sense that they are responsible for the diversity of its asymptotic behaviours. Here, we pursue further this idea and argue that beyond the influence of underlying circuits, intersections of circuits also impact significantly on the dynamics of a network and thus need to be payed special attention to. For some genetic regulation networks involved in the control of the immune system (“immunetworks”), we show that the small number of attractors can be explained by the presence, in the underlying structures of these networks, of intersecting circuits that “inter-lock”.  相似文献   

12.
Y Tang  H Gao  W Zou  J Kurths 《PloS one》2012,7(7):e41375
Recent studies have detected hubs in neuronal networks using degree, betweenness centrality, motif and synchronization and revealed the importance of hubs in their structural and functional roles. In addition, the analysis of complex networks in different scales are widely used in physics community. This can provide detailed insights into the intrinsic properties of networks. In this study, we focus on the identification of controlling regions in cortical networks of cats' brain in microscopic, mesoscopic and macroscopic scales, based on single-objective evolutionary computation methods. The problem is investigated by considering two measures of controllability separately. The impact of the number of driver nodes on controllability is revealed and the properties of controlling nodes are shown in a statistical way. Our results show that the statistical properties of the controlling nodes display a concave or convex shape with an increase of the allowed number of controlling nodes, revealing a transition in choosing driver nodes from the areas with a large degree to the areas with a low degree. Interestingly, the community Auditory in cats' brain, which has sparse connections with other communities, plays an important role in controlling the neuronal networks.  相似文献   

13.
14.
Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.  相似文献   

15.
Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method’s potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments.  相似文献   

16.
Alida Liberman 《Bioethics》2017,31(7):495-504
In this article, I address what kinds of claims are of the right kind to ground conscientious refusals. Specifically, I investigate what conceptions of moral responsibility and moral wrongness can be permissibly presumed by conscientious objectors. I argue that we must permit HCPs to come to their own subjective conclusions about what they take to be morally wrong and what they take themselves to be morally responsible for. However, these subjective assessments of wrongness and responsibility must be constrained in several important ways: they cannot involve empirical falsehoods, objectionably discriminatory attitudes, or unreasonable normative beliefs. I argue that the sources of these constraints are the basic epistemic, relational, and normative competencies needed to function as a minimally decent health‐care professional. Finally, I consider practical implications for my framework, and argue that it shows us that the objection raised by the plaintiffs in Zubik v. Burwell is of the wrong sort.  相似文献   

17.
Mardulyn P 《Molecular ecology》2012,21(14):3385-3390
Phylogenetic trees and networks are both used in the scientific literature to display DNA sequence variation at the intraspecific level. Should we rather use trees or networks? I argue that the process of inferring the most parsimonious genealogical relationships among a set of DNA sequences should be dissociated from the problem of displaying this information in a graph. A network graph is probably more appropriate than a strict consensus tree if many alternative, equally most parsimonious, genealogies are to be included. Within the maximum parsimony framework, current phylogenetic inference and network‐building algorithms are both unable to guarantee the finding of all most parsimonious (MP) connections. In fact, each approach can find MP connections that the other does not. Although it should be possible to improve at least the maximum parsimony approach, current implementations of these algorithms are such that it is advisable to use both approaches to increase the probability of finding all possible MP connections among a set of DNA sequences.  相似文献   

18.
The applicability of metapopulation theory to large mammals   总被引:2,自引:0,他引:2  
Metapopulation theory has become a common framework in conservation biology and it is sometimes suggested that a metapopulation approach should be used for management of large mammals. However, it has also been suggested that metapopulation theory would not be applicable to species with long generations compared to those with short ones. In this paper, we review how and on what empirical ground metapopulation terminology has been applied to insects, small mammals and large mammals. The review showed that the metapopulation term sometimes was used for population networks which only fulfilled the broadest possible definition of a metapopulation, i.e. they were subpopulations connected by migrating individuals. We argue that the metapopulation concept should be reserved for networks that also show some kind of metapopulation dynamics. Otherwise it applies to almost all populations and loses its substance. We found much empirical support for metapopulation dynamics in both insects and small mammals, but not in large mammals. A possible reason is the methods used to confirm the existence of metapopulation dynamics. For insects and small mammals, the common approach is to study population turnover through patch occupancy data. Such data is difficult to obtain for large mammals, since longer temporal scales need to be covered to record extinctions and colonizations. Still, many populations of large mammals are exposed to habitat fragmentation and the resulting subpopulations sometimes have high risks of extinction. If there is migration between the subpopulations, the metapopulation framework could provide valuable information on their population dynamics. We suggest that a metapopulation approach can be interesting for populations of large mammals, when there are discrete breeding subpopulations and when these subpopulations have different growth rates and demographic fates. Thus, a comparison of the subpopulations’ demographic fates, rather than subpopulation turnover, can be a feasible alternative for studies of metapopulation dynamics in large mammals.  相似文献   

19.
20.
In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号