共查询到20条相似文献,搜索用时 0 毫秒
1.
Takács T Radimszky L Németh T 《Zeitschrift für Naturforschung. C, Journal of biosciences》2005,60(3-4):357-361
The aim of this work was to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) species in fine-roots of poplar clones. Roots of 7 poplar clones were sampled from a 1-year-old trial established at an industrial site strongly polluted with heavy metals at Balatonfuzfo, Hungary. The poplar clones have shown variable degrees of colonization by AMF, suggesting differential host susceptibility or mycorrhizal dependency. After outplanting the percentage of poplar survival was strongly correlated with the frequency of AMF infection. Two clones that survived at the lowest ratio after outplanting had not been colonized by AMF in contrast to those which survived to a much higher extent. 相似文献
2.
3.
涝渍胁迫对杨树苗期叶片生长及其生理性状的影响 总被引:6,自引:1,他引:5
以3种典型的美洲黑杨苗木(I69、NL80105和NL80351)在不同的涝渍胁迫条件下,苗木叶面积生长明显减慢;叶片气孔开度显著减小;叶片水势和丙二醛(MDA)含量有所增加;超氧化物歧化酶(SOD)活性无明显变化;叶片中的全N、全P和全K含量发生变化。综合分析认为,I69杨在强涝渍胁迫下抗耐能力较高。NL80351杨在弱涝渍胁迫下适应性较强,短期涝渍对杨树无性系苗木无明显影响,30d以上的涝渍对其影响显著。 相似文献
4.
Mutations in DMI3 and SUNN modify the appressorium-responsive root proteome in arbuscular mycorrhiza
Amiour N Recorbet G Robert F Gianinazzi S Dumas-Gaudot E 《Molecular plant-microbe interactions : MPMI》2006,19(9):988-997
Modification of the Medicago truncatula root proteome during the early stage of arbuscular mycorrhizal symbiosis was investigated by comparing, using two-dimensional electrophoresis, the protein patterns obtained from non-inoculated roots and roots synchronized for Glomus intraradices appressorium formation. This approach was conducted in wild-type (J5), mycorrhiza-defective (TRV25, dmi3), and autoregulation-defective (TR122, sunn) M. truncatula genotypes. The groups of proteins that responded to appressorium formation were further compared between wild-type and mutant genotypes; few overlaps and major differences were recorded, demonstrating that mutations in DMI3 and SUNN modified the appressorium-responsive root proteome. Except for a chalcone reductase, none of the differentially displayed proteins that could be identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry previously was known as appressorium responsive. A DMI3-dependent increased accumulation of signal transduction-related proteins (dehydroascorbate reductase, cyclophilin, and actin depolymerization factor) was found to precede mycorrhiza establishment. Differences in the accumulation of proteins related to plant defense reactions, cytoskeleton rearrangements, and auxin signaling upon symbiont contact were recorded between wild-type and hypermycorrhizal genotypes, pointing to some putative pathways by which SUNN may regulate very early arbuscule formation. 相似文献
5.
环境污染物对丛枝菌根(AM)形成及功能的影响 总被引:2,自引:2,他引:2
丛枝菌根(AM)具有植物和微生物的双重特性,在污染土壤修复中受到越来越多的重视.AM在修复污染土壤的同时,也深受污染物毒害的影响,从而降低AM在污染土壤修复中的作用.如何减少环境污染物对AM的不利影响,是AM应用中需要考虑的问题.从有机和无机污染物角度, 综述了不同污染物对AM形成及功能的影响,并分析了可能的影响机理.大量研究表明,无论是有机污染物还是无机污染物,都会对AM的结构、形成和功能产生破坏性影响,主要表现在孢子萌发、侵染率、菌丝伸长受抑制等.有机污染物可能通过影响光合产物向AM真菌的分配, 间接影响AM真菌的活性,而重金属则通过抑制AM真菌活性, 直接对其产生影响. 相似文献
6.
丛枝菌根对枳实生苗抗旱性的影响研究 总被引:10,自引:1,他引:10
在自然水分干旱胁迫和胁迫解除复水条件下,研究了丛枝菌根对1年生枳实生苗生长和抗旱性的影响.结果表明,接种丛枝菌根真菌Glomusmosseae93显著增加枳实生苗的株高、茎粗和鲜重,提高了幼苗移栽成活率.在自然水分干旱胁迫和胁迫解除复水过程中,丛枝菌根提高或者极显提高了叶片可溶性糖含量、叶片和根系的可溶性蛋白质含量、超氧化物歧化酶活性、过氧化物酶活性和过氧化氢酶活性,从而提高了枳实生苗的渗透调节能力,增强了其保护系统能力,降低了细胞膜脂过氧化,使枳实生苗抗旱能力增强.表明丛枝菌根真菌增强寄主植物抗旱能力的作用机制与保护系统相关. 相似文献
7.
《新西兰生态学杂志》2011,31(2):255-260
Leptospermum is one of only three New Zealand genera that are colonised by ectomycorrhizal (EM) fungi, and L. scoparium is one of the very few New Zealand species that can be colonised by both arbuscular mycorrhizal (AM) and EM fungi. This study examined AM and EM colonisation on L. scoparium growing within AM grassland ecosystems or adjoining Nothofagus forest in the Rakaia catchment, Canterbury. Very low AM colonisation was found (<4%) in all samples, while EM colonisation ranged from 7 to 55% of root length colonised. These results contradict an earlier report that L. scoparium is mostly colonised by AM fungi. We suggest the montane environment of the study sites would favour EM rather than AM colonisation. EM colonisation was higher in mature plants than in saplings. Lowest EM colonisation (7–15%) was recorded on root samples that were from either young or mature plants occurring as separate individuals in grassland distant from other indigenous EM species, while highest colonisation (49–55%) was recorded on samples from mature closed canopy L. scoparium stands, irrespective of distance from other indigenous EM sources. 相似文献
8.
Phosphorus nutrition-mediated effects of arbuscular mycorrhiza on leaf morphology and carbon allocation in perennial ryegrass 总被引:1,自引:0,他引:1
The aim of this work was to disentangle phosphorus status-dependent and -independent effects of arbuscular mycorrhizal fungus (AMF) on leaf morphology and carbon allocation in perennial ryegrass (Lolium perenne). To this end, we assessed the P-response function of morphological components in mycorrhizal and nonmycorrhizal plants of similar size. AMF (Glomus hoi) stimulated relative P-uptake rate, decreased leaf mass per area (LMA), and increased shoot mass ratio at low P supply. Lower LMA was caused by both decreased tissue density and thickness. Variation in tissue density was almost entirely caused by variations in soluble C, while that in thickness involved structural changes. All effects of AMF were indistinguishable from those mediated by increases in relative P-uptake rate through higher P-supply rates. Thus the relationships between relative P-uptake rate, leaf morphology and C allocation were identical in mycorrhizal and nonmycorrhizal plants. No evidence was found for AMF effects not mediated by changes in plant P status. 相似文献
9.
杨树落叶前后重金属元素内外迁移循环规律研究 总被引:9,自引:1,他引:9
供试元素在杨树各部位的含量和贮量为Zn>Cu>As>Pb>Cd,并与环境中相应元素浓度呈正相关.落叶时元素的迁移主要发生在叶、枝、根和干之间,叶中8~48%的As、Zn迁移至主干的皮与材中,而Cu、Pb、Cd贮量均有增加,Zn、As的内循环占总循环量的40%,Cd、Pb、Cu表现为外循环,占总贮量的17~27%.同时分析了植物对土壤重金属污染的净化效率. 相似文献
10.
丛枝菌根结构与功能研究进展 总被引:5,自引:0,他引:5
丛枝菌根(arbuscular mycorrhiza,AM)是陆地生态系统中分布最广泛、最重要的互惠共生体之一,对提高植物抗逆性、修复污染生境、保持生态系统稳定与可持续生产力的作用显著.AM结构特征是判断菌根形成的主要指标,与其功能密切相关.本文总结了AM丛枝结构、泡囊结构、菌丝结构和侵入点结构等发育特征;分析了A型丛枝结构、P型丛枝结构、泡囊结构和根外菌丝结构与促进寄主植物养分吸收和生长、提高植物抗旱性、耐涝性、耐盐性、抗高温、拮抗病原物、提高植物抗病性、抗重金属毒性、分解有毒有机物、修复污染与退化土壤等功能的关系,及其所发挥的重要作用;探讨了影响AM结构与功能的因子,以及基于AM不同结构所发挥功能的作用机制.旨在为系统研究AM真菌发育特征、AM真菌效能机制,以及评价和筛选AM真菌高效菌种提供依据. 相似文献
11.
Miransari M 《Biotechnology advances》2011,29(6):645-653
Use of plants, with hyperaccumulating ability or in association with soil microbes including the symbiotic fungi, arbuscular mycorrhiza (AM), are among the most common biological methods of treating heavy metals in soil. Both hyperaccumulating plants and AM fungi have some unique abilities, which make them suitable to treat heavy metals. Hyperaccumulator plants have some genes, being expressed at the time of heavy metal pollution, and can accordingly localize high concentration of heavy metals to their tissues, without showing the toxicity symptoms. A key solution to the issue of heavy metal pollution may be the proper integration of hyperaccumulator plants and AM fungi. The interactions between the soil microbes and the host plant can also be important for the treatment of soils polluted with heavy metals. 相似文献
12.
S Saykhedkar A Ray P Ayoubi-Canaan SD Hartson R Prade AJ Mort 《Biotechnology for biofuels》2012,5(1):52-17
Background
Fungi are important players in the turnover of plant biomass because they produce a broad range of degradative enzymes. Aspergillus nidulans, a well-studied saprophyte and close homologue to industrially important species such as A. niger and A. oryzae, was selected for this study.Results
A. nidulans was grown on sorghum stover under solid-state culture conditions for 1, 2, 3, 5, 7 and 14?days. Based on analysis of chitin content, A. nidulans grew to be 4-5% of the total biomass in the culture after 2?days and then maintained a steady state of 4% of the total biomass for the next 12?days. A hyphal mat developed on the surface of the sorghum by day one and as seen by scanning electron microscopy the hyphae enmeshed the sorghum particles by day 5. After 14?days hyphae had penetrated the entire sorghum slurry. Analysis (1-D PAGE LC-MS/MS) of the secretome of A. nidulans, and analysis of the breakdown products from the sorghum stover showed a wide range of enzymes secreted. A total of 294 extracellular proteins were identified with hemicellulases, cellulases, polygalacturonases, chitinases, esterases and lipases predominating the secretome. Time course analysis revealed a total of 196, 166, 172 and 182 proteins on day 1, 3, 7 and 14 respectively. The fungus used 20% of the xylan and cellulose by day 7 and 30% by day 14. Cellobiose dehydrogenase, feruloyl esterases, and CAZy family 61 endoglucanases, all of which are thought to reduce the recalcitrance of biomass to hydrolysis, were found in high abundance.Conclusions
Our results show that A. nidulans secretes a wide array of enzymes to degrade the major polysaccharides and lipids (but probably not lignin) by 1?day of growth on sorghum. The data suggests simultaneous breakdown of hemicellulose, cellulose and pectin. Despite secretion of most of the enzymes on day 1, changes in the relative abundances of enzymes over the time course indicates that the set of enzymes secreted is tailored to the specific substrates available. Our findings reveal that A. nidulans is capable of degrading the major polysaccharides in sorghum without any chemical pre-treatment. 相似文献13.
Patterns of arbuscular mycorrhiza down the profile of a heavy textured soil do not reflect associated colonization potential 总被引:1,自引:0,他引:1
D. B. NEHL P. A. McGEE V. TORRISI G. S. PATTINSON & S. J. ALLEN 《The New phytologist》1999,142(3):495-503
Colonization of roots by arbuscular mycorrhizal (AM) fungi in several annual crops in two consecutive seasons was compared with, in the second season, the density of fungal propagules in the soil with the use of a bioassay. Root density decreased down the soil profile in both years in all crops, and a high proportion of roots were mycorrhizal throughout the profile. AM colonization decreased down the profile in cotton and lablab in the second season only. The bioassay indicated that most propagules of AM fungi in soils under cotton were located near the surface, with virtually no propagules at 1 m. The absence of propagules at depth indicates a lack of mycelium deep in the soil, and suggests that mycorrhizas are primarily initiated in the surface soil and that the fungi colonize the root system mostly through secondary spread down the profile. The use of AM colonization in the field as an indicator of propagule density and symbiotic function should be qualified by an understanding of the depth in the soil from which roots were extracted. 相似文献
14.
Kadri Koorem Ülle Saks Virve Sõber Annika Uibopuu Maarja Öpik Martin Zobel Mari Moora 《Basic and Applied Ecology》2012,13(8):663-672
Arbuscular mycorrhizal (AM) fungal communities can influence the species composition of plant communities. This influence may result from effects of AM on seedling recruitment, although the existing evidence is limited to experimental systems. We addressed the impact of AM fungi on the plant community composition and seedling recruitment of two species – Oxalis acetosella and Prunella vulgaris – in a temperate forest understory. We established a field experiment over two years in which soil fertility (using fertilizer to enhance and sucrose to decrease fertility) and the activity of AM fungi (using fungicide) was manipulated in a factorial design. Species richness, diversity and community composition of understory plants were not influenced by soil fertility or AM fungal activity treatments. However, plant community composition was marginally significantly affected by the interaction of these treatments as the effect of AM fungal activity became evident under enhanced soil fertility. Suppression of AM fungal activity combined with decreased soil fertility increased the number of shoots of herbaceous plants. Unchanged activity of AM fungi enhanced the growth of O. acetosella seedlings under decreased soil fertility, but did not influence the growth of P. vulgaris seedlings. We conclude that the role of AM fungi in structuring plant communities depends on soil fertility. AM fungi can have a strong influence on seedling recruitment, especially for those plants that are characteristic of the habitat. 相似文献
15.
Mercury, cadmium and cobalt were found to be the most toxic heavy metals, inducing strong growth inhibition of the tested
basidiomycetes. The studied species differed significantly in their sensitivity to cadmium. The most sensitive fungus,Inonotus obliquus, did not grow at Cd concentrations higher than 0.1 mmol/L, whereasStereum hirsutum grew at more than 2 mmol Cd/L. Changes in mycelial morphology were observed inS. hirsutum andTrametes versicolor cultivated in the presence of cadmium and mercury. The toxicity of heavy metals was lower in rich, complex media.
Presented at the 4th Mini-Symposium on Biosorption and Microbial Degradation, Prague, Czech Republic, November 26–29, 1996. 相似文献
16.
Among the oldest symbiotic associations of plants are arbuscular mycorrhiza (AM) with fungi of the phylum Glomeromycota. Although many of the symbiotic signaling components have been identified on the side of the plant, AM fungi have long evaded genetic analysis owing to their strict biotrophy and their exceptional genetics. Recently, the identification of the fungal symbiosis signal (Myc factor) and of a corresponding Myc factor receptor, and new insights into AM fungal genetics, have opened new avenues to address early communication and functional aspects of AM symbiosis. These advances will pave the way for breeding programs towards adapted AM fungi for crop production, and will shed light on the ecology and evolution of this remarkably successful symbiosis. 相似文献
17.
18.
氮碳添加和丛枝菌根对外来入侵植物豚草的影响 总被引:1,自引:1,他引:1
通过温室控制试验,研究了氮碳素添加及丛枝菌根(AM)对外来入侵植物豚草生长的影响.结果表明: 氮素添加对豚草的形态指标、生物量及其分配特征和生长速率均没有显著影响,却使豚草地上器官和根的氮含量显著增加;碳素添加增加了土壤中的有效氮含量,促使豚草增加营养吸收器官的生物量分配以缓解养分(氮素)胁迫,导致分枝数、总叶面积、比叶面积和叶生物量比明显降低,总生物量显著减少.豚草与AM真菌共生增强了其适应土壤氮素变化的能力,增加了比叶面积,提高了豚草的资源获取能力,其作用在土壤有效氮含量低时更加明显.AM真菌对豚草适应低氮生境有着重要意义. 相似文献
19.
丛枝真菌对互花米草和芦苇氮磷吸收的影响 总被引:6,自引:0,他引:6
互花米草(Spartina alterniflora Loisel.)是我国海滨盐沼的入侵植物,与土著种芦苇(Phragmites australis)形成了广泛的竞争;已知丛枝菌根(AMF)对不同植物的生长存在差异性影响;但其对互花米草与芦苇之间的种间关系,是否对互花米草入侵芦苇群体产生作用值得探讨.研究对两物种进行了丛枝菌根接种处理,种植模式处理和盐度处理的三因素实验.结果表明:盐度增加使得单种时芦苇、混种时互花米草的AMF侵染率显著下降(p<0.05),而混种时芦苇和单种时的互花米草AMF侵染率受盐度影响不显著(p>0.05).混种时,两种植物的丛枝菌根形成均受对方影响,并且盐度升高使两种植物之间对AMF侵染率的影响发生变化,在淡水生境下混种时,芦苇的AMF侵染率比单种时降低40.5%,互花米草的AMF侵染率比单种时提高了86.9%,均差异显著(p<0.05);在低盐度下混种时芦苇的AMF侵染率比单种时降低24.7%,差异显著(p<0.05),而对互花米草的影响不显著;在高盐度下混种对芦苇的AMF侵染率影响不显著,而使互花米草的AMF侵染率显著降低,降低率比例达78.7%.在淡水生境下,丛枝菌根对芦苇和互花米草的N、P吸收均有显著的促进作用;但是在咸水生境下生长时芦苇的N、P含量主要受盐度的显著影响(p<0.05),随盐度增加而增加;虽然在咸水生境下丛枝菌根仍旧促进芦苇的N、P吸收,但其影响远小于盐度的影响,并且促进效果受到盐度的抑制;但互花米草的N、P含量不受盐度影响.由此可见,接种AMF对这两种植物的氮磷吸收有着不同程度的促进,其作用大小与侵染程度有关,且受到盐度和种植模式的影响. 相似文献
20.
重金属污染可能改变稻田土壤团聚体组成及其重金属分配 总被引:11,自引:0,他引:11
采集了太湖地区污染与非污染稻田表土,采用原状土低能量分离-分散技术提取土壤团聚体粒组,分析土壤中不同粒径团聚体颗粒组质量组成和Pb、Cd、Hg、As等重金属元素的含量, 讨论重金属污染下土壤团聚体组成和重金属团聚体分配的变化.结果表明:在重金属污染下,供试水稻土砂粒级团聚体减少,而较细粒径团聚体相对增多;4种重金属元素在不同粒径团聚体颗粒组中的含量存在差异,但随粒径的变化趋势基本一致,即在<0.002 mm粒径的颗粒组中最高, 其次是0.2~2 mm粒径的颗粒组,而在0.02~0.2 mm和0.002~0.02 mm粒径的团聚体中呈现亏缺现象(富集系数为0.56~0.96).表明重金属污染可能减弱了较大土壤团聚体的形成,导致细粒径团聚体相对增多,从而明显提高了重金属元素在粉砂和粘粒组团聚体中的分配,这可能进一步提高了污染农田重金属的水迁移和大气颗粒物迁移的风险.对于重金属污染对稻田土壤生物物理和生物化学过程的影响及其机制还需要进一步研究. 相似文献