首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of brain-derived neurotrophic factor (BDNF) in sensory hypersensitivity has been suggested; however the molecular mechanisms and signal transduction that regulate BDNF expression in primary afferent neurons during visceral inflammation are not clear. Here we used a rat model of cystitis and found that the mRNA and protein levels of BDNF were increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. BDNF up-regulation in the L6 DRG was triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reduced BDNF levels during cystitis. The neutralizing NGF antibody also subsequently reduced cystitis-induced up-regulation of the serine/threonine kinase Akt activity in L6 DRG. To examine whether the NGF-induced Akt activation led to BDNF up-regulation in DRG in cystitis, we found that in cystitis the phospho-Akt immunoreactivity was co-localized with BDNF in L6 DRG, and prevention of the endogenous Akt activity in the L6 DRG by inhibition of phosphoinositide 3-kinase (PI3K) with a potent inhibitor LY294002 reversed cystitis-induced BDNF up-regulation. Further study showed that application of NGF to the nerve terminals of the ganglion-nerve two-compartmented preparation enhanced BDNF expression in the DRG neuronal soma; which was reduced by pre-treatment of the ganglia with the PI3K inhibitor LY294002 and wortmannin. These in vivo and in vitro experiments indicated that NGF played an important role in the activation of Akt and subsequent up-regulation of BDNF in the sensory neurons in visceral inflammation such as cystitis.  相似文献   

2.
We observed that recombinant ciliary neurotrophic factor (CNTF) enhanced survival and neurite outgrowth of cultured adult rat dorsal root ganglion (DRG) neurons. Among other neurotrophic factors (NGF and GDNF) and interleukin (IL)-6 cytokine members [IL-6, LIF, cardiotrophin-1, and oncostatin M (OSM)] at the same concentration (50 ng/ml), CNTF, as well as LIF and OSM, displayed high efficacy for the promotion of the number of viable neurons and neurite-bearing cells. CNTF enhanced the number of neurite-bearing cells in both small neurons (soma diameter <30 mum) and large neurons (soma diameter >/=30 mum), whereas NGF and GDNF promoted that in only small neurons. Western blot analysis revealed that CNTF induced phosphorylation of STAT3, Akt, and ERK1/2 in the neurons. Furthermore, the neurite outgrowth-promoting activity of CNTF was diminished by co-treatment with Janus kinase (JAK) 2 inhibitor, AG490; STAT3 inhibitor, STA-21; phosphatidyl inositol-3'-phosphate-kinase (PI3K) inhibitor, LY294002; and mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, in a concentration-dependent manner. Its survival-promoting activity was also affected by AG490, STA-21, and LY294002 at higher concentrations, but not by PD98059. These findings suggest the involvement of JAK2/STAT3, PI3K/Akt, and MEK/ERK signaling pathways in CNTF-induced neurite outgrowth, where the former two pathways are thought to play major roles in mediating the survival response of neurons to CNTF.  相似文献   

3.
Calcitonin gene-related peptide (CGRP)-immunoreactive afferent nerve fibers are abundant in the rat penis. In addition, NADPH-diaphorase, which stains for nitric oxide synthase, has been localized within both autonomic and sensory dorsal root ganglia (DRG) and may be part of an important biochemical pathway involved in penile tumescence. The purpose of this study was: 1) to examine the circuitry of afferent nerves that are CGRP immunoreactive from the L6 DRG, 2) to examine the possibility that there are NADPH-diaphorase-positive afferent fibers from the L6 DRG to the rat penis, and 3) to examine the localization and colocalization of CGRP and NADPH-diaphorase within L6 DRG afferent perikarya. Calcitonin gene-related peptide immunostaining in the penis was eliminated following a bilateral transection of the pudendal nerves, but was unchanged following a bilateral transection of the pelvic splanchnic or hypogastric nerves. The NADPH-diaphorase staining was not altered by any of the nerve transections. Injection of the retrograde axonal tracer fluorogold (FG) into the dorsum penis labeled perikarya in the L6 DRG. Although the majority of FG-labeled perikarya contained neither CGRP nor NADPH-diaphorase, small subpopulations of perikarya contained either CGRP immunoreactivity, NADPH-diaphorase, or both. A unilateral pudendal nerve transection virtually eliminated (>99%) FG labeling in the ipsilateral L6 DRG. These data suggest that NADPH-diaphorase and CGRP are present, either together or separately, within a subpopulation of penile afferent perikarya. In addition, CGRP-immunoreactive afferent nerve fibers reach the penis primarily via the pudendal nerves. Finally, NADPH-diaphorase-positive penile afferents may be another important source of nitric oxide (NO) for penile tumescence.  相似文献   

4.
Jia YD  Chen X  Tang M  Jiang ZY 《生理学报》2008,60(1):149-155
本文在mRNA和蛋白水平观察了功能性ghrelin受体(growth hormone secretagogue receptor type la,GHS-Rla)在大鼠内脏迷走及脊髓传入神经通路中的表达.结果显示:(1)GHS-Rla免疫反应阳性神经元及GHS-Rla mRNA分布于背根神经节(dorsal root ganglion,DRG)及结状神经节(nodose ganglion,NG).(2)应用免疫双标技术观察到DRG和NG中都有一些GHS-Rla免疫反应阳性神经元,同时降钙素基因相关肽(calcitonin gene-related peptide,CGRP)染色呈阳性,显示GHS-Rla和CGRP共存于同一神经元,表明内脏传入神经元存在许多亚核群.(3)应用荧光金(fluorogold)标记的神经逆行追踪技术对从胃投射到DRG和NG的神经元进行免疫组织化学染色,观察到一些表达CGRP的GHS-Rla免疫反应阳性神经元也被荧光金染色.上述实验结果证实了GHS-Rla在迷走神经和脊髓传入神经元中的表达,提示ghrelin参与了胃.脑轴的调节.  相似文献   

5.
Mohamed Kodiha 《FEBS letters》2009,583(12):1987-21867
ERK and Akt kinases are key components that participate in numerous regulatory processes, including the response to stress. Using novel tools for quantitative immunofluorescence, we show that oxidant exposure controls the intracellular activation and localization of ERK1/2 and Akt. Oxidative stress alters the nuclear/cytoplasmic levels of the kinases, drastically changing phospho-ERK1/2 and phospho-Akt(Ser473) levels in the nucleus. Moreover, pharmacological inhibition of PI3 kinase modulates the intracellular distribution of phospho-ERK1/2, whereas MEK inhibition affects phospho-Akt(Thr308) and phospho-Akt(Ser473). Our studies identify a new signaling link in the nucleus of stressed cells, where changes in phospho-ERK1/2 levels correlate directly with changes in phospho-Akt(Ser473).  相似文献   

6.
Previously, it was believed that the lumbar intervertebral disc was innervated segmentally by dorsal root ganglion (DRG) neurons via the sinuvertebral nerves. Recently, it was demonstrated using retrograde tracing methods that the lower disc (L5-L6) is innervated predominantly by upper (L1 and L2) DRG neurons via the sympathetic trunks. Furthermore, we investigated the expression of various pain-related molecules such as calcitonin gene-related peptide (CGRP), isolectin B4 (IB4), P2X(3) receptor and vanniloid receptor 1 (VR1) in DRG neurons innervating the disc using a combination of immunostaining with the retrograde tracing method. This review outlines the distribution and immunocytochemical characterization of DRG neurons innervating the disc. Small nociceptive DRG neurons are classified into nerve growth factor (NGF)-dependent neurons and glial cell line-derived neurotrophic factor (GDNF)-dependent neurons and they can be distinguished by their reactivity for CGRP and IB4, respectively. We found that about half of the neurons innervating the disc were CGRP-immunoreactive (-ir), whilst, only 0.6% of the DRG neurons were IB4-positive, thereby indicating that NGF-dependent neurons are the main subpopulation which transmits and modulates nociceptive information from the disc. In addition, we also demonstrated P2X(3)- and VR1-immunoreactivity in DRG neurons innervating the disc and noted that they were mainly localized in NGF-dependent neurons. It is well known that NGF has sensitizing effects on DRG neurons, with a recent study demonstratng the presence of NGF in the painful intervertebral disc. Therefore, it is suggested that NGF is involved in the generation of discogenic low back pain.  相似文献   

7.
8.
Axonal regeneration is influenced by factors in the extracellular environment, including neurotrophins, such as NGF, and adhesion molecules, such as laminin. The provision of both NGF and a permissive substrate to cultured adult NGF-responsive DRG neurons results in enhanced levels of neurite growth not achievable by either factor alone. In this study, we have investigated the early signalling events that contribute to NGF and laminin-induced neurite growth. Adult NGF-responsive DRG neurons were plated on poly-d-lysine for 2 h then stimulated with NGF, laminin, or laminin plus NGF for 10 min, 1 h, or 6 h. Signalling pathways were subsequently analysed using Western blotting and pharmacological inhibition of specific signalling components. While activation of the various signalling intermediates (Src, FAK, Akt, MAPK) could be detected as early as 10 min-1 h after stimulation, significant neurite growth was observed mainly at the 6 h time point. The results of the time course experiments showed differential activation of the signalling intermediates. Src was activated by all treatments (NGF, laminin and the combination) at the earliest time point analysed, 10 min. NGF stimulation also resulted in detectable activation of FAK, Akt and MAPK by 10 min. However, laminin stimulation alone did not result in detectable activation of FAK, Akt or MAPK until the 1 h time point. Inhibition of either Src or FAK activity attenuated both laminin and/or NGF-induced PI 3-K/Akt and MEK/MAPK signalling pathways, as well as neurite growth. Downstream inhibition of Akt by Akt knockdown also blocked observed neurite growth, while inhibition of MEK/MAPK had no significant effect. Together, these results demonstrate that signalling underlying neurite growth can be detected within minutes of stimulation and provide a mechanism for the observed enhancement of neurite growth when both NGF and the permissive substrate, laminin, are provided.  相似文献   

9.
Nerve growth factor (NGF) and insulin-like growth factor-1 (IGF-1) play an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Adult DRG neurons exhibit neurotrophin-independent survival, providing an excellent system with which to study trophic factor effects on neurite growth in the absence of significant survival effects. Using young adult rat DRG neurons we have demonstrated a synergistic effect of NGF plus IGF (N + I), compared with either factor alone, in promoting neurite growth. Not only does the presence of NGF and IGF-1 enhance neurite initiation, it also significantly augments the extent of neurite branching and elongation. We have also examined potential mechanism(s) underlying this synergistic effect. Immunoblotting experiments of classical growth factor intermediary signalling pathways (PI 3-K-Akt-GSK-3 and Ras-Raf-MAPK) were performed using phospho-specific antibodies to assess activation state. We found that activation of Akt and MAPK correlated with neurite elongation and branching. However, using pharmacological inhibitors, we observed that a PI 3-K pathway involving both Akt and GSK-3 appeared to be more important for neurite extension and branching than MAPK-dependent signalling. In fact, inhibition of activation of MAPK with U0126 resulted in increased neuritic branching, possibly as a result of the concomitant increase observed in phospho-Akt. Furthermore, inhibition of GSK3 (which is negatively regulated by phosphorylation on S9/S21) also resulted in increased growth. Our data point to signalling convergence upon the PI 3-K-Akt-GSK-3 pathway that underlies the NGF plus IGF synergism. In addition, to our knowledge, this is the first report in primary neurons that inhibition of GSK3 results in an enhanced neurite growth.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) is a neuromodulator of nociceptive responses in the dorsal root ganglia (DRG) and spinal cord. BDNF synthesis increases in response to nerve growth factor (NGF) in trkA-expressing small and medium-sized DRG neurons after inflammation. Previously we demonstrated differential activation of multiple BDNF promoters in the DRG following peripheral nerve injury and inflammation. Using reporter constructs containing individual promoter regions, we investigated the effect of NGF on the multiple BDNF promoters, and the signaling pathway by which NGF activates these promoters in PC12 cells. Although all the promoters were activated 2.4-7.1-fold by NGF treatment, promoter IV gave the greatest induction. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294003, protein kinase A (PKA) inhibitor, H89, and protein kinase C (PKC) inhibitor, chelerythrine, had no effect on activation of promoter IV by NGF. However, activation was completely abolished by the MAPK kinase (MEK) inhibitors, U0126 and PD98059. In addition, these inhibitors blocked NGF-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2. Taken together, these results suggest that the ERK1/2 pathway activates BDNF promoter IV in response to NGF independently of NGF-activated signaling pathways involving PKA and PKC.  相似文献   

11.
12.
Low concentrations of capsaicin (CAP) stimulate and high concentrations of CAP can be toxic to the primary sensory neurons of the dorsal root ganglion (DRG). CAP induces the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in DRG neurons. The effect of the activation of ERK1/2 by different concentrations of CAP on growth-associated protein 43 (GAP-43) expression and calcitonin gene-related peptide (CGRP) depletion in DRG neurons remains unknown. In the present study, organotypic embryonic 15-day-old rat DRG explants were used to determine the effect of different concentrations of CAP on GAP-43 expression and CGRP depletion. The results showed that, compared to unstimulated control cultures, GAP-43 and pERK1/2 protein levels increased at a low concentration (2 μmol/L) of CAP and decreased at a higher concentration (10 μmol/L). The number of CGRP-immunoreactive (IR) migrating neurons also decreased in CAP-treated cultures. The increase in GAP-43 levels and CGRP depletion could be blocked by the administration of ERK1/2 inhibitor PD98059. The results of the present study imply that CAP at different concentrations has different effects on GAP-43 expression and CGRP depletion. These effects were involved in the activation of ERK1/2 in organotypically cultured DRG neurons stimulated with CAP. These data may provide new insights for further development potential therapeutic applications of CAP with moderate dose on neurogenic inflammation.  相似文献   

13.
CGRP and substance P (SP) are produced in dorsal root ganglia (DRG) sensory neurons and modulate vascular tone. Sympathetic and sensory nerves compete for NGF, a potent stimulator of CGRP and SP, and it has been suggested that sympathetic hyperinnervation in spontaneously hypertensive rats may reduce the availability of NGF to sensory nerves, thus reducing CGRP and SP. The purpose of this study was to determine whether destruction of peripheral sympathetic nerves in normal rats would increase the availability of NGF for sensory neurons and enhance expression of CGRP and SP. Sympathectomy was produced in rats by guanethidine sulfate administration. Control rats received saline. Sympathectomized rats displayed reductions in blood pressure (BP) and atria norepinephrine levels, whereas NGF levels in the DRG, spleen, and ventricles were increased. Sympathectomy also enhanced CGRP and SP mRNA and peptide content in DRG. Administration of CGRP and SP receptor antagonists increased the BP in sympathectomized rats but not in the controls. Thus sympathectomy enhances sensory neuron CGRP and SP expression that contributes to the BP reduction.  相似文献   

14.
Insulin-like growth factor-I (IGF-I) is emerging as an important growth factor able to modulate the programmed cell death (PCD) pathway mediated by the cysteine-dependent aspartate proteases (caspases); however, little is known about the effect of IGF-I after nerve growth factor (NGF) withdrawal in neurons. To begin to understand the neuronal death-sparing effect of IGF-I under NGF-free conditions, we tested whether embryonic sensory dorsal root ganglion neurons (DRG) were able to survive in defined serum-free medium in the presence of IGF-I. We further studied the role of IGF-I signaling and caspase inhibition after NGF withdrawal. NGF withdrawal produced histological changes of apoptosis including chromatin condensation, shrinkage of the perikaryon and nucleus, retention of the plasma membrane, and deletion of single cells. Both IGF-I and Boc-aspartyl (OMe)-fluoromethylketone (BAF), a caspase inhibitor, equally reduced apoptosis after NGF withdrawal. The antiapoptotic effect of IGF-I was completely blocked by LY294002, an inhibitor of PI 3-kinase signaling, but not by the mitogen-activated protein (MAP) kinase/extracellular signal-regulated protein kinase (ERK) activated protein kinase inhibitor PD98059. Functional IGF-I receptors were extensively expressed both in rat and human DRG neurons, although they were most abundant in the neuronal growth cone. Collectively, these findings indicate that IGF-I, signaling though the PI-3 kinase pathway, is important in modulating PCD in cultured DRG neurons after NGF withdrawal, and IGF-I may be important in DRG embryogenesis. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 455–467, 1998  相似文献   

15.
Both neurotrophins (NTs) and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons and nerve-muscle communication. However, much less is known about the association of target SKM cells with distinct NTs on the expression of mRNAs for preprotachykinin (PPT), calcitonin-gene related peptide (CGRP), neurofilament 200 (NF-200), and microtubule associated protein 2 (MAP-2) in dorsal root ganglion (DRG) sensory neurons. In the present study, a neuromuscular coculture model of dissociated dorsal root ganglion (DRG) neurons and SKM cells was established. The morphology of DRG neurons and SKM cells in coculture was observed with an inverted phase contrast microscope. The effects of nerve growth factor (NGF) or neurotrophin-3 (NT-3) on the expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 was analyzed by real time-PCR assay. The morphology of DRG neuronal cell bodies and SKM cells in neuromuscular coculture at different conditions was similar. The neurons presented evidence of dense neurite outgrowth in the presence of distinct NTs in neuromuscular cocultures. NGF and NT-3 increased mRNA levels of PPT, CGRP, and NF-200, but not MAP-2, in neuromuscular cocultures. These results offer new clues towards a better understanding of the association of target SKM cells with distinct NTs on the expression of mRNAs for PPT, CGRP, NF-200 and MAP-2, and implicate the association of target SKM cells and NTs with DRG sensory neuronal phenotypes.  相似文献   

16.
《Phytomedicine》2014,21(10):1178-1188
Tenuifoliside A (TFSA) is a bioactive oligosaccharide ester component of Polygala tenuifolia Wild, a traditional Chinese medicine which was used to manage mental disorders effectively. The neuroprotective and anti-apoptotic effects of TFSA have been demonstrated in our previous studies. The present work was designed to study the molecular mechanism of TFSA on promoting the viability of rat glioma cells C6. We exposed C6 cells to TFSA (or combined with ERK, PI3K and TrkB inhibitors) to examine the effects of TFSA on the cell viability and the expression and phosphorylation of key proteins in the ERK and PI3K signaling pathway. TFSA increased levels of phospho-ERK and phospho-Akt, enhanced release of BDNF, which were blocked by ERK and PI3K inhibitors, respectively (U0126 and LY294002). Moreover, the TFSA caused the enhanced phosphorylation of cyclic AMP response element binding protein (CREB) at Ser133 site, the effect was revoked by U0126, LY294002 and K252a. Furthermore, when C6 cells were pretreated with K252a, a TrkB antagonist, known to significantly inhibit the activity of brain-derived neurotrophic factor (BDNF), blocked the levels of phospho-ERK, phospho-Akt and phosphor-CREB. Taking these results together, we suggested the neuroprotection of TFSA might be mediated through BDNF/TrkB-ERK/PI3K-CREB signaling pathway in C6 glioma cells.  相似文献   

17.
Ras promotes robust survival of many cell systems by activating the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, but little is understood about the survival functions of the Ras/ERK pathway. We have used three different effector-loop mutant forms of Ras, each of which activates a single downstream effector pathway, to dissect their individual contributions to survival of nerve growth factor (NGF)-dependent sympathetic neurons. The PI3-kinase pathway-selective protein Ras(Val-12)Y40C was as powerful as oncogenic Ras(Val-12) in preventing apoptosis induced by NGF deprivation but conferred no protection against apoptosis induced by cytosine arabinoside. Identical results were obtained with transfected Akt. In contrast, the ERK pathway-selective protein Ras(Val-12)T35S had no protective effects on NGF-deprived neurons but was almost as strongly protective as Ras(Val-12) against cytosine arabinoside-induced apoptosis. The protective effects of Ras(Val-12)T35S against cytosine arabinoside were completely abolished by the ERK pathway inhibitor PD98059. Ras(Val-12)E37G, an activator of RalGDS, had no survival effect on either death pathway, similar to RasS17N, the full survival antagonist. Thus, Ras provides two independent survival pathways each of which inhibits a distinct apoptotic mechanism. Our study presents one of the few clear-cut cases where only the Ras/ERK, but not the Ras/PI3K/Akt pathway, plays a dominant survival signaling role.  相似文献   

18.
In dorsal root ganglia (DRG) cell cultures, levels of calcitonin gene-related peptide (CGRP) are increased in the presence of ovarian hormones and nerve growth factor (NGF). In addition, injection of ovariectomized rats with ovarian hormones led to an increase in levels of two NGF receptors, TrkA and p75(NTR), in DRG. Thus, we hypothesized that increased levels of ovarian hormones during pregnancy may elevate the synthesis of CGRP and NGF receptors in the DRG. DRG harvested from rats on specific days of pregnancy, on Day 2 postpartum, and after ovariectomy were subjected to radioimmunoassay, Western blot analysis, and NGF immunoassay to determine levels of CGRP, TrkA and p75(NTR), and NGF, respectively. CGRP levels in rat DRG were significantly higher during pregnancy than at Day 2 postpartum or in ovariectomized rats. Levels of both TrkA and p75(NTR) in DRG increased during pregnancy and remained elevated at Day 2 postpartum, but CGRP levels declined. Levels of NGF reached a statistically significant peak at Day 18 of gestation, and were not significantly reduced at Day 2 postpartum. Increased levels of ovarian steroid hormones during pregnancy may be involved in the synthesis of CGRP, however, the postpartum decreases in CGRP synthesis appear to be unrelated to NGF and its receptors.  相似文献   

19.
20.
Past research has shown that natural products of plant and marine origins and their congeners enhance the actions of neuritogenic factors of the central nervous system (CNS) such as nerve growth factor (NGF). However, the role of fluorine substitutions in their structure–activity relationship (SAR) has not been explored. We have synthesized a trifluoromethyl analog of verbenachalcone (VC), a pharmacologically active natural compound previously shown to potentiate NGF activity. This analog, designated C278, enhances neurite outgrowth and proliferation of NeuroScreen-1™ (NS-1) cells, a subclone of PC12 pheochromocytoma cells. C278 increases the percentage of neurite bearing cells in the presence of suboptimal doses of NGF in comparison with controls treated with NGF alone. In addition, C278 stimulates cell growth in reduced serum and serum-free cell culture conditions based on our observation of increases in cell number and metabolic assessment with MTT reduction and resazurin assays. The addition of C278 partially restored inhibition of NGF-induced neurite outgrowth by the mitogen-activated protein kinase kinase (MEK) inhibitors PD98059 and U0126. Short-term sequential exposure of cells to U0126, C278, and NGF enhanced phosphorylation of extracellular signal-regulated kinase (ERK) in comparison with cells treated with only the MEK inhibitor and NGF. C278 also attenuated cell growth arrest caused by exposure to PD98059, U0126 and the phosphatidylinositol-3 kinase (PI3K) inhibitor, LY294002 but did not alter phosphorylation of Akt, a classic downstream target of PI3K during cell survival. These data suggest that C278 promotes NGF-dependent neurite outgrowth in NS-1 cells through a MEK signaling pathway by a mechanism that alters short-term activation of ERK. In contrast, C278 promotes PI3K-mediated survival independently of Akt phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号